Predicting Indoor Temperature using Machine Learning

Projet de modélisation

Références

D. Yu, A. Abhari, A.S. Fung, K. Raahemifar, F. Mohammadi, « Predicting indoor temperature from smart thermostat and weather forecast data », Proceedings of the Communications and Networking Symposium, Baltimore, 2018. https://dl.acm.org/doi/10.5555/3213200.3213209

Développeur(s)
Danilo Yu

Description

Using the ecobee thermostat data from sixteen Canadian and US houses, the prediction accuracy of the generalized regression neural network (GRNN) algorithm and the resilient back propagation neural network (ANN) algorithm were evaluated. The physical range of this model encompasses a single building.

Applications

residential building demand, load forecasting

Intrants clés

outdoor temperature, solar radiation, thermostat temperature setpoints, humidity, heating and cooling durations, fan duration

Extrants clés

indoor temperature

Développeurs répertoriés

NomOrganisation
Danilo YuRyerson University