ELECTRIFICATION OF CANADIAN NORTHERN COMMUNITIES, USING LOW EMISSION MICROGRIDS

3/30/2021

Mehrdad Pirnia, Enrique Gabriel Vera, Claudio Canizares

Outline

- Electrification in Remote Communities (RCs)
- Electrification models for RCs
- Microgrid (MG) planning model
- Model assumptions
- Scenarios
- Case Study
- Contributions
- Future work

RC Electrification

PROBLEM	 Electrification of RC highly dependent on fossil fuels. High electricity rates: transportation costs, no access to bulk power system. Low flexibility and reliability. High GHG emissions.
CHALLENGES	Geographical location, extreme weather conditions, consumption patterns, and availability of energy source.
SOLUTION	Deployment of MGs with Renewable Energy Resources (RES) and Energy Storage Systems (ESS).
RES MGs	 Based on a wide variety of Distributed Energy Resources (DERs), which include RES and ESS. Provide access to cheaper, cleaner and more flexible and reliable electricity.

FACULTY OF

MG Electrification Models

Model and its outcomes

- Plan an appropriate energy supply mix to satisfy electricity demand in RCs.
- Advocate decarbonized electrification in RC MGs using **RES** and **ESS**.
- Support Canada in meeting zero emissions target by prioritizing the **reduction of GHG emissions**.
- Identify the optimal (most economic) size and mixture of the generation resources, and the time of their deployment.

Gap Filling

- From a planning perspective, the model allows quantifying the potential benefits of MGs with RES and ESS, promoting their adoption for **RC MGs decarbonization**.
- Gap addressed is the inclusion of **hydrogen systems** as part of the ESS technologies considered in the planning process.

MG Planning Model

Type of Mathematical Model **Optimization model** involving an **objective function**, a set of **parameters**, decision **variables**, and technical, economical, and/or environmental **constraints**.

Objective

Minimize: Net Present Cost (NPC) of total costs, including capital, and O&M costs.

Binary: Hourly on/off status of diesel generators, charging and discharging status of batteries and hydrogen storage systems, and purchase of new diesel generators.

Variables

Integer: Investments in RES capacities (except solar).

Continuous: Generation power output, SOC of batteries and hydrogen storage systems.

Inputs

Estimated parameters: Electricity demand and RES availability.

Technical and economical parameters.

FACULTY OF

MG Planning Model

NPC of Investment: For new diesel generators, RES, and ESS.

NPC of Operation and Maintenance: For new and existing diesel generators, RES, and ESS.

NPC of Fuel Costs: For diesel generators.

Fuel Consumption: For diesel generators.

Yearly Capacity additions: For new diesel generators, RES, and ESS.

Total Savings.

GHG emissions reduction.

Outputs

MG Planning Model

FACULTY OF

MG Planning Model Solution

UNIVERSITY OF

FACULTY OF

Study Case: Sanikiluaq

- This is a community located in Nunavut.
- Only permanent settlement where nearly 800 people reside.
- Types of consumption: residential and institutional electricity.
- Type of generation: 100% diesel.
- Type of electricity grid: not connected to a power system or other MGs (isolated RC MG).

Assumptions

Time	Simplification for simulations: A representative day of each month is considered 288 hours are used: 24 hours x 12 days.
Economical Parameters	 Discount rate (d) : 8%. Cost of Diesel: 2.391 (\$/l).
Windows for Investment	 RES and ESS: First 5 years. Diesel: Between 3rd and 10th year.
Technical Parameters	 Reserves: 50% for wind, 25% for solar, and 10% for load. Ramping up/down: not considered, generators can turn on/off in fractions of 1 hour. Temperature at standard conditions: 25 °C. Continuous charging/discharging: 4 hours. Load grow: 1%/year. Minimum load for diesel generators: 40%
Inclusion of RES	 At least 1 hydrogen system. 1% of annual energy supplied by solar and/or wind

UNIVERSITY OF

WAT

ERLOO

FACULTY OF

Scenarios

Base Case	Business as usual, operation based on diesel generators.
1A	D+S+W+B+H: Diesel (D) + Solar (S) +Wind(W)+Batteries (B) + Hydrogen (H).
2A	D+S+W+H: No Batteries.
3A	D+S+W+B: No Hydrogen.
4A	S+W+B+H: No Diesel, operation only with RES and ESS.
1B	D+W+B+H: Diesel (D) + Wind(W)+Batteries (B) + Hydrogen (H).
2B	D+W+H: No Batteries.
3B	D+W+B: No Hydrogen.
4B	W+B+H: No Diesel, operation only with RES and ESS.

• Demand:

Figure 2: Sanikiluaq yearly average load profile [6].

• Solar Panels: A continuous variable.

Cost (\$/kW)	O&M (\$/kWh)	$\alpha \text{ (p.u./}^{\circ}C)$	GT^{STC}	df	Lifetime
$5,\!082$	0.0145	-0.041	$1 \text{ kW}/m^2$	98%	20 years

Table 1: Parameters and costs for solar panels at Sanikiluaq.

• Solar cell temperature and monthly Solar Irradiation.

Figure 3: Sanikiluaq's monthly average (a) temperatures τ and (b) solar irradiation SI [6].

UNIVERSITY OF

FACULTY OF

• New diesel generators:

Fuel Consumption Curves

Table 2: New diesel generator parameters and costs.

• Existing diesel generators:

Fuel Consumption Curves

Con	Capacity	O&M	Lifetime	a	b	с
Gen.	(kW)	(Wh)	(h)	$(l/h/kW^2)$	(l/h/kW)	(l/h)
1	330	0.0218	$35,\!339$	-0.0006	0.5212	-15
2	330	0.0218	$21,\!600$	-0.0006	0.5212	-15
3	330	0.0218	$14,\!400$	-0.0006	0.5212	-15
4	330	0.0218	7,200	-0.0006	0.5212	-15
5	500	0.0218	64,696	0.00003	0.2105	10.3
6	540	0.0218	68,820	0.00003	0.2144	10.3
7	550	0.0218	$100,\!000$	0.00003	0.2105	10.3

Table 3: Main generators' characteristics at Sanikiluaq.

• Existing diesel generators stand-by modes:

								Ye	ear	of Pr	oject	Hor	izon							
Gen.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1		*		*		*		*		*		*		*		*		*		*
2		*		*		*		*		*		*		*		*		*		*
3	*		*		*		*		*		*		*		*		*		*	
4	*		*		*		*		*		*		*		*		*		*	
5	*		*		*		*		*		*		*		*		*		*	
6	*		*		*		*		*		*		*		*		*		*	
7		*		*		*		*		*		*		*		*		*		*

Table 4: Existing diesel generators in stand-by mode (*).

• Wind Turbines and Wind Data: Wind generators with **250 kW of nominal capacity** were considered.

Cost (\$/kW)	O&M (\$/kWh)	Cut-in Speed	Nominal Speed	Cut-out speed	Lifetime
7,943	0.0363	$2.5 \mathrm{m/s}$	$7.5 \mathrm{m/s}$	$25 \mathrm{~m/s}$	20 years

Figure 4: Average wind speed WS at 21m hub height [6].

• Battery modules: Li-ion batteries with 100 kWh and 20 kW peak power of charge/discharge.

Cost $(\$/kWh)$	O&M (\$/kWh)	SOC_0	DoD	η_{Ch}	η_{DCh}
1,504	0.0069	50%	20%	95%	95%

Table 6: Parameters and costs of batteries.

• Hydrogen System: Fuel cells, electrolyzer, and a hydrogen tank.

	Capacity (kW) 250	Cost (\$/u) 168,581	O&M (\$/h) 2	$\begin{array}{c c} \eta_{FC} & \text{Lifetin} \\ 60\% & 50, \end{array}$	me (h) 000						
	Tab	le 7: Paramet	ers and costs of	fuel cells.		in Fe (kw)					
	Capacity (kW 330) Cost $(\$/u)$ 1,279,000	O&M (\$/y) 194	η_E Lifetin 70% 1	me (y) 5	Electrolizer	H (kg)	Hydrogen Tank (SOC ^{HT})	H (kg)	Fuel	Cell
	Tabl	e 8: Paramete	rs and costs of $\left[\right]$	electrolizer.						out	Pf (kW)
Capa	city (kg) Cost	(\$/u) O&M	(\$/h) HHV	l_C	Lifetime (y)						,
	200 249	745 12,4	400 39.4 kW	Vh 0.02 p.u.	25						
	I		·	•		Fig	ure 5: Scher	natic representation	of hydrogen sys	stem .	

Table 9:Parameters and costs of the hydrogen tank.

Planning Results

Case Only Diesel 1A D+S+W+B+H 2A D+S+W+H 3A D+S+W+B											
	Case		Diesel	Solar	Wind	Batteries	Fuel Cells	Hydrogen Tank	Electrolizer	GHG Red.	
			(kW)	(kW)	(kW)	(kWh/kW)	(kW)	(kg)	(kW)	(%)	
	Only Diesel										
Ι	1A	D+S+W+B+H	0	264	750	800/160	250	200	990	85.8%	
I	2A	D+S+W+H	0	92	1000		250	400	1320	93.2%	
Ί	3A	D+S+W+B	0	431	500	1800/360				64.3%	
ŀ	4A	S+W+B+H	0	577	1000	1000/200	500	200	660	100%	
Ι	1B	D+W+B+H	320		1000	200/20	250	400	1320	86.1%	
	2B	D+W+H	0		1000		250	400	1320	93.5%	
I	3B	D+W+B	840		500	1900/380				51.9%	
	4B	W+B+H	0		1250	3900/780	500	200	660	100%	

Table 10: Total Capacity additions during the planning horizon.

				N	et Present	Costs		
		Case	Fuel Cost	O&M Diesel Gen.	Investment	RES and ESS O&M	Total Cost	
			(M\$)	(M\$)	(M\$)	(M\$)	(M\$)	
		Only Diesel	24.87	0.89			25.76	
	1A	D+S+W+B+H	3.06	0.11	11.54	3.49	18.19	-29
١	2A	D+S+W+H	1.77	0.06	11.94	3.55	17.32	-33
	3A	D+S+W+B	9.12	0.32	8.52	3.19	21.15	-18
	4A	S+W+B+H	0.00	0.00	16.57	4.62	21.19	-1
۲	1B	D+W+B+H	1.64	0.06	11.87	3.54	17.11	-34
	2B	D+W+H	1.76	0.06	11.53	3.43	16.78	-3
	3B	D+W+B	11.97	0.40	6.55	2.71	21.63	-1
	4B	W+B+H	0.00	0.0	19.20	6.60	25.80	+(

Table 11: Associated Costs.

Savings can be achieved

FACULTY OF ENGINEERING

Best total GHG and savings

GHG reductions in all cases

100% RES penetration and operation is possible

Contributions

FACULTY OF

Contributions

Policy Design

Policies aligned with **energy sustainability** and affordability for RCs in Canada.

The model facilitates consideration of **environmental**, economical, and community factors.

As part of a National Platform The model can be used by **experts**, **researchers**, **investors**, and **policymakers**.

The model helps to determine: Requirements for **financing**, **construction**, **management**, and real time **operation** of RC MGs.

Create products, services, and strategies that help mitigate and solve energy related public problems for RCs

Future work

- Apply the model to address the needs of RCs in Canada.
- Consider more sophisticated methods to incorporate uncertainties in the proposed model.
- Test reliability of different generation mixes.

References

- E. Vera, C. Canizares, and M. Pirnia, "Renewable Energy Integration in Canadian Remote Community Microgrids. The feasibility of hydrogen and gas generation," *IEEE Electrification Magazine*, vol. 8, no. 4, pp. 36–45, December 2020.
- H. Farhangi and G. Joos, Microgrid Planning and Design: A Concise Guide, 1st ed. Wiley-IEEE Press, 2019.
- [3] J. Knowles, "Power Shift: Electricity for Canada's remote communities," Ottawa: The Conference Board of Canada, 2016. [Online]. Available: https: //www.conferenceboard.ca/e-library/abstract.aspx?did=8249
- [4] F. Delfino, R. Procopio, M. Rossi, S. Bracco, M. Brignone, and M. Robba, *Microgrid Design and Operation*. Boston, London: Artech House, 2018.
- [5] C. Canizares and I. Das, "Feasibility studies of variable speed generators for Canadian Arctic Communities," WISE, 2017.
- [6] I. Das and C. A. Cañizares, "Renewable Energy Integration in Diesel-Based Microgrids at the Canadian Arctic," *Proceedings of the IEEE*, vol. 107, no. 9, pp. 1838– 1856, Sep. 2019.
- [7] D. Olivares, "An Energy Management System for Isolated Microgrids Considering Uncertainty," Ph.D. dissertation, University of Waterloo, 2014.
- [8] GAMS Development Corp. Gams documentation center. [Online]. Available: https://www.gams.com/latest/docs/

- [9] M. Arriaga, C. A. Caizares, and M. Kazerani, "Long-term renewable energy planning model for remote communities," *IEEE Transactions on Sustainable Energy*, vol. 7, no. 1, pp. 221–231, 2016.
- [10] A. Dane and L. Doris, "Alaska Strategic Energy Plan and Planning Handbook." National Renewable Energy Laboratory, 2013.
- [11] A. Kanduth, J. Moorhouse, and D. Beugin, "CANADA'S NET ZERO FUTURE: Finding our way in the global transition." Canadian Institute for Climate Choices, 2021.
- [12] Canadian Institute for Climate Choices, "Canada's net zero future: Finding our way in the global transition," 2021.
- [13] A. Khodaei, S. Bahramirad, and M. Shahidehpour, "Microgrid planning under uncertainty," *IEEE Transactions on Power Systems*, vol. 30, no. 5, pp. 2417–2425, Sep. 2015.
- [14] S. P. Burger, J. D. Jenkins, S. C. Huntington, and I. J. Perez-Arriaga, "Why distributed?: A critical review of the tradeoffs between centralized and decentralized resources," *IEEE Power and Energy Magazine*, vol. 17, no. 2, pp. 16–24, Mar. 2019.
- [15] A. Ehsan and Q. Yang, "Stochastic investment planning model of multi-energy microgrids considering network operational uncertainties," in 2018 China International Conference on Electricity Distribution (CICED), Sep. 2018, pp. 2583–2587.

FACULTY OF

References

[16] J. Bisschop, AIMMS Modelling Guide. AIMMSB.V., 2021.

- [17] C. Bataille, D. Sawyer, and N. Melton, "Pathways to deep Decarbonization in Canada." Sustainable Development Solutions Network (SDSN) and Institute for Sustainable Development and International Relations (IDDRI), 2015.
- [18] World Energy Council, "WORLD ENERGY TRILEMMA INDEX 2020," 2020.
- [19] M. Arriaga, C. A. Canizares, and M. Kazerani, "Renewable energy alternatives for remote communities in northern ontario, canada," *IEEE Transactions on Sustainable Energy*, vol. 4, no. 3, pp. 661–670, 2013.
- [20] Municipality of Sanikiluaq. [Online]. Available: http://www.sanikiluaq.ca
- [21] M. Gascó-Hernández, Open Government, ser. Public Administration and Information Technology. Springer, New York, NY, 2014.
- [22] NASA. Prediction of worldwide resources. [Online]. Available: https://power.larc. nasa.gov

UNIVERSITY OF WATERLOO

FACULTY OF ENGINEERING

Our greatest impact happens together.

Electrification in Northern Communities