

Simulation of the "e-highway" technology for the decarbonization of heavy transport on the A20-H401 highway corridor in Eastern Canada

Presented by:

Johanne Whitmore (HEC Montreal) Clara-Kayser Bril (CPCS)

Ramata Ba (CPCS)

Table of contents:

- Introduction
- Presentation of the e-highway concept
- Model and Methodology
- > Assumptions
- Results
- Conclusion

Chair in Energy Sector Management **HEC MONTRĒAL**

Introduction

>Freight transportation is one of the most challenging sector to decarbonize

- Heavy truck sector = 8% of national emissions and tripled since 1990
- Complex (logistics chains, regulations and cross-border traffic...)
- Supports daily economic activities

Achieving Canada's net zero emissions goals by 2050 will require decisive action in this sector, both technologically and logistically

Current initiatives are insufficient to place Canada on a clear path towards zeroemission road freight

• Carbon tax; improving standards for heavy-duty trucks; subsidizing alternative truck technologies and fuels; Clean fuel standard for regulating minimum levels of biofuels in diesel.

Limits of the current approach has led to considering new option: e-highways

 Overhead catenary system to directly power heavy truck engines equipped with pantographs, on dedicated highway corridors

Objective of the study

Simulate the potential of e-highway technology for the decarbonization of heavy freight transport on a 1,300 km of the A20-H401 highway corridor connecting Quebec, Montreal and Toronto, up to the U.S. border

- Based on a GIS analysis of current flows of heavy vehicles, according to the present road capacity of the A20-H401
- Study considers hybrid diesel-catenary electric trucks (class 8 and above)
- First step in a proposal developed by HEC Montréal and CPCS, in collaboration with government, university and private partners, to compare the costs and potential of different decarbonization technologies along the A20-H401 axis.

The e-highway: a new concept based on centuryold technology

- A supporting structure built outside the road boundary holds two overhead catenaries, supplying the positive and negative electrical circuit.
- Electricity is transferred to the trucks through a pantograph installed on the roof.
- A secondary source of energy is used outside of electrified roads. This secondary source can be diesel or electricity (with a long-range battery), as well as hydrogen, bio-gas, etc.
- The technology is extremely flexible, as trucks equipped with the technology remain able to circulate on any road. The catenary system does not prevent other vehicles from using the electrified highway

Relevance in the Canadian context and benefits

- Linear transportation network
- Clean and affordable electricity
- Use of existing road infrastructure
- Flexibility (transfer from hybrid system to battery over time)
- Tested in cold climate (Sweden)
- Known technology
- > Efficiency given direct use of electricity
- No downtime for recharging batteries (for 100% electric trucks)
- Low maintenance and repair costs
- Significant potential for GHG emissions reductions

e-highways are being pilot-tested in several countries

California: 1.6km segment

Sweden: 2km segment

• Germany: 3 ongoing pilots

 10km electric road test track near Frankfurt

 5km portion of a motorway near Lübeck

a selected public test route between Kuppenheim and Gernsbach-Obertsrot

ന്റ്രാ

Our model simulates the deployment of an e-highway on the A20-H401 corridor

Chair in Energy Sector Management **HEC MONTRĒAL**

The model compares the costs and benefits with a business-as-usual baseline

Techno-economic parameters of the e-highway Scenario for deployment and adoption by the industry

english CaRES (in simplexing oth addructure) (is of a single-week of addructure) (is of a single-week of addructure) (is of a single-week of addructure) (is of addructure) (is of addructure) (is a consequence of typical indication on a single-week of addructure) (is of addructure) (is of addructure) (is developed) (is developed) (is of addructure) (is of addructure) (is developed) (is developed) (is of addructure) (is developed) (is devel	0AB DABIYaad Sylfer Debyg Byller DABIYaab DABIyaab DABIyaab DABIyaab	81,04,00	10,011,000 879 1,011,000 70,914,010 10,914,010 10,210,014	10.034.000 118 6.012.000 0.040.000 1.701.007 0.017.008	10.034.040 150 6.043.077 8.050.044 3.750.044 3.750.044	10.010.000 000 7.010.000 81.017.000 81.010.000 81.010.000 01.010.000 01.010.000	11.004.000 5.00 7.400.70 8.700.70 8.700.20 8.700.20 8.700.20	1.101.000 800 1.01.071 01.071.000 3.107.000 01.000,000	12.10%,00% 12.00%,00% 4.00%,00% 1000,04%,04% 1400,01% 24.000,71% 25.0100,040	62.004.000 MD 0.000,000 FE2.044,000 FE2.044,000 1.0440.001 DL 440.001	12.004,000 5.007 8.007.314 117.000,117 8.100,440 30.007.00	ELIDIARI 1975 8.375.827 102.502.445 8.502.445 80.864.865	12.804,000 3,118 9,708,041 0,7,274,046 8,808,600 80,700,014	11.504.005 5.185 8.785.881 107.514.040 8.865.60 30.790.614	12.854,000 1.556 8.700,041 07.274,040 8.866,850 08.702,014	10.034.000 1.115 8.768.001 (27.374.000 8.005.101 00.762.000	12.634 1.100 12.234 12.234 13.435 14.755
ning and second second pro- rise control of a control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the contr	eyree Codinyee Cooleyn Cooleyn Cooleyn Cooleyn Codinyee Codinyee		114,002,000 88,141,025 89(116 89(116)	101-011-000 00.001-007 310.005 01-005 01-005 1-00.000	194,614,300 194,614,388 398,785 68 398,797	VIT. 100, 508 108, 977 June 256, 567 168 256, 568	100,000,000 100,000,000 000,000 000,000	002.004.001 144,000.771 306,010 51 306,100	400.008.821 114.800,800 440.825 63 440.825	411.025.046 UK.716.446 455.034 66 456.775	111,347,388 186,889,571 865,544 80 167,586	102,007,341 142,200,000 415,410 61 015,004	100.400,011 140,070,714 60,000 64 100,000	100.488.411 14433/55.714 68 685.300	100.000,211 110,070,714 001,200 64 001,200	100.400.411 140.015.114 401.000 64 401.000	196.482.0 196.3752 485.0 485.0
A service concentration of the service of the servi	Chillysee Chillysee Chillysee Chillysee EAllysee B	100-200-000 100-200-000 100-200-000	00,017,014 00,017,014 00,017,014 0100,012,000	P.118380 W.201.817 P.115382 (WH, 998389)	76,006,718 197,014,019 76,000,718 (387,886,716)	P1.595,297 108,277,304 218,257,304 (108,215,307)	80,101,200 10,800,800 90,101,200 (210,014,200) (210,014,200)	81,097,003 198,080,771 81,897,903 (627,798,308)	87.003.429 134.204.204 97.003.409 (30.005.479)	012.238,488 138,753,449 512.238,489 71,318,399	017 A05,001 136,000,017 517,008,003 179,117,084	112307-A23 442308-539 112397-533 387,793,588	117,877,884 448,379,714 117,877,814 499,879,815	117.427.884 148,878,714 117,877,888 527,546,988	17 87,88 160,07,716 17 27,00 645,420,380	117,077,000 140,074,714 117,077,000 107,000,000	117,875,8 168,876,7 177,875,8 985,181,8
Contraction Meeting (Section)	1.6.003																
elaparati sconeno ritrytos trone e see perig deserve coverentity lytratitency tracks	No pri basar na transis an rant transferr		40,101,018	11.000.00	17.245.945	1116 1116	81.111.54	81.011.000	10.417.00	10.001.000	14.10.T	110,040,000	ITANA.NO	111,00,000	113.536,003	113,002,003	11,002,0
en Confect CaRCs of a sugar-up of settingentian Confect and an encoded and a setting and the sugarant dataset and solid terms function and the sugarant dataset and a setting of setting and the sugarant dataset and a setting of setting and a setting and a setting setting on a setting and a second and a fugarant a setting setting.	UAD UADruste UADrustyme UADrustyme UADrustyme UADrustyme UADrust	Tra, BBL:	11.400.000 007 7.040.000 10.010.000 7.000.000 10.400.000 00.400.000	Exc	cel-	·ba	se	d n	100	lel		11.400,000 1.400 12.014.007 10.419.100 11.400.100 50.400.000	12,000,000 (,400 13,070,007 173,000,044 11,8(7,710 46,400,710	13.400.000 1.406 13.575.004 19.305.044 19.305.044 19.305.044 40.405.101	15.405,000 (400 15.075,001 178.005,001 178.005,001 11.807,010 45.405,010	15,485,000 15,076,004 176,986,684 176,986,684 176,986,684 176,986,684 176,986,685	15.482.0 13.492.0 19.492.0 19.492.0 19.492.0
ning and a second president ingo and the social determination (m) and the social determination (m) and (m) and (m) to social determination (social determination (social determination (social determination (social determination (social determination (social determination (social	Eyster Undriveet Undriveet Undriveet Undriveet		100,000,000 110,041,040 301,000 50 80,719	101,000,704 107,040,008 404,046 404,007	171,410,400 100,000,117 400,007 58 400,009	100,011,010 141,216,004 477,000 477,007	101.011.010 101.011.010 000.010 000.010	004.012.040 108.129.048 010.400 108.000.400 100.004	214,212,204 197,000,000 204,003 70 106,002	804,413,400 191,040,504 190,405 190,400	214.014.019 ME 889.901 889.901 76 999.719	344,0* 0,001 100,003,409 000,010 00 000,400	244.545,545 190.871,836 800,544 85 490,885	200,0-0,000 F96,0-0,000 980,000 880,000 880,000	255,000,005 199,000,000 600,000 600,000 600,000	198,41,500 198,911,926 982,644 86 96 96	HOUSE A
all the constraints and constraints and an of a contrast time in a constraint of the constraints and a constraint time in a constraint of the constraints of the constraint of the constraints of the constraints and the constraints of the cons	CADyear CADyear CADyear CADyear CADyear B	(774,805,008) (774,805,008) (774,805,008)	86,601,075 116,547,540 06,601,075 (966,036,016)	86.825.245 127.312.638 46.835.245 (388,310,784)	18,79,588 (9,96,17 (8,76,29 (9,75,276)	108,732,775 141,216,384 198,738,775 (258,896,387)	10.400.000 01.111.010 10.000.000 000.107.010	421,0+6,307 1991,129,649 101,648,307 (139,472,175)	102,007,000 927,000,000 112,007,000 (2,079,000,	UCBP AN UCBP AN UCBP AN UCBP AN	144,574,008 142,008,001 142,514,008 276,207,023	10.01.00 10.05.00 10.05.00 10.05.00 40.01.00	118, AUR, AUR 100, 817, 230 104, AUR, 200 200, 200, 200	110.404.60 100.271.090 100.404.00 764.014.000	118.400.608 198.97 (208 198.400.508 960.001(361	118,409,408 100,011,908 118,406,008 1,907,278,107	108.405.00 108.011.0 108.405.00 1,219.004.0
grant Markow, Presid Jamust in and	BATLATAN.		-								_	-	-	_		-	
rt regionel formania e man pearly defenses constant by hybrid haden fronte	To of teacor thanks in particulary	19	10.01110	30,000,007	40,000,000	41,721,458	1414	11.000	17%. 47.010,488	0.100.00	10% 76.007.048	01.301.000	H.AND.NT	10.0 % APR	HOLMON AND	100,000.011	- mark
An angle LARCS of a regroup of satisfication Cruit a region of interference Inter of found terms trucks within on the beginnet	UAB UABINISH Ny SING TABAYA TIYOTAN	129,890,200		10,012,000	10.000	96912200	NAME OF	-	12.112.000	11.1.1.1.1	15.212,000	HAT NOT	10.512.000	41.9-12.000 1.044	18,912,000	10,010,000	HARRING NA

Costs

- Investment cost
- O&M cost, incl electricity

Benefits

- Savings on fuel
- Avoided CO₂

Chair in Energy Sector Management HEC MONTREAL

Techno-economic parameters of the e-highway come from a review of the literature

Assumptions (continued)

Parameter	Value	Basis
Extra capital cost per individual truck	50,000 CAD/truck	Extra investment per truck, covering the pantograph, the electric drive train, and a buffer battery.
Electricity consumption on e-highway	1.5 kWh/km	Value available in the literature range from 1.23 to 1.94
Diesel consumption on highway	0.45 liters/km	Average of 5.25 mpg (Ontario) and 5.35 mpg (Quebec)
Carbon contents of electricity	QC: 1.2 g CO2eq/kWh ON: 40 g CO2eq/kWh	Natural Resources Canada's 2017 National Inventory Report
Carbon contents of diesel	2.6 kgCO2eq/l	Natural Resources Canada's 2017 National Inventory Report
Cost of diesel	0.78 CAD/liter	Natural Resources Canada, 17 Feb. 2021. Taxes are excluded (0.389 CAD/liter)
Value of 1 ton of avoided CO2	50 to 170 CAD	

under maximum adoption assumptions, the infrastructure pays back in 10-20 years

	\$							
	Highway segments	Simple payback period @\$50/tCO2	Simple payback period @\$170/tCO2					
1.	Rivière du Loup – Quebec (without city areas)	25	13					
3.	Quebec – Montreal (without city areas)	23	12					
5.	Montreal – Prescott (without city area)	23	9					
6.	Prescott – Toronto (without city area)	20	8					
8.	Toronto – Windsor (without city area)	17	7					
Total	A20 – H401	20	9					

Test #1:

Payback period is shorter on segments with higher traffic

Simple payback period: number of years after initial investment costs would be completely offset by net savings from avoided diesel consumption.

Test #2: simulates a realistic, step-by-step deployment scenario

- Start with
 South-West:
 denser traffic
- 5-year increments to allow for construction time
- North East portion of the route last to be electrified

Test #2: adoption by the industry is assumed to progress slowly

Chair in Energy Sector Management HEC MONTREAL

Test #2: under this "realistic" scenario, benefits outweigh the costs from \$85/tCO2

ന്റ്രാ

Chair in Energy Sector Management HEC MONTREAL

Test #3: Viability is sensitive to infrastructure cost and adoption rate

Limitations of the study and future research avenues

- Uncertainty on adoption rate of technology
- Relevance of technology for heavy truck industry (operational constraints) and better understanding of the preferences of the industry
- Financing structure and costs
- Benefits sharing allocation between different stakeholders
- > Other feasibility considerations ex: overhead clearance issues
- > Different configurations ex: alternative switching systems
- Different design for catenary trucks

Link to download report

https://energie.hec.ca/e-highwaysimulationeastcanada/

> Thank you:

- EMI for funding
- Academic collaborator:
 - Normand Mousseau, Institut Énergie Trottier Polytechnique Montréal
- Reviewers:
 - Peter Harrison, CPCS
 - Joel Carlson, CPCS
 - Patrik Åkerman, Siemens Mobility
 - Pierre-Olivier Pineau, HEC Montréal

Chair in Energy Sector Management **HEC MONTRĒAL**

Advisors to infrastructure leaders.

Contact details of authors:

Clara Kayser-Bril: ckayserbril@cpcs.ca

Johanne Whitmore: johanne.whitmore@hec.ca

Ramata Ba: rba@cpcs.ca

Ashok Kinjarapu: akinjarapu@cpcs.ca