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Abstract
We systematically explore the behavior of an integrated energy‑climate‑economy simu‑

lation model to determine the importance of factors behind reducing greenhouse gas emis‑

sions, and policy alternatives for reaching specific climate goals. We study themodel’s behav‑

ior across 184 input parameters and nine outcomes of interest using global sensitivity analy‑

sis and scenario discovery. For scenario discovery, we consider a climate‑based and a policy

threshold of success: 152 MtCO2e emissions per year by 2050, a representation of the Cana‑

dian Long Term Strategy, and net cumulative costs that are free or save money. We identify

that a substantial industrial carbon tax of at least $270 CAD/tCO2e is unavoidable, additional

transmission capacity development not exceed 115% of no interventions, and building insu‑

lation capital costs improve by at least 19%. Our work highlights how the systematic explo‑

ration of complex simulation models can expose their underlying dynamics and constraints

while reducing analyst bias and properly treating uncertainty, highlighting the importance for

the modelling community to shift to an exploratory modelling paradigm.
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Résumé
Nous explorons systématiquement le comportement d’un modèle de simulation intégré

énergie‑climat‑économie afin de déterminer l’importance des facteurs à l’origine de la réduc‑

tion des émissions de gaz à effet de serre, et les solutions de rechange pour atteindre des

objectifs climatiques spécifiques. Nous étudions le comportement du modèle à travers 184

paramètres d’entrée et 34 résultats d’intérêt en utilisant l’analyse de sensibilité globale et la

découverte de scénarios. Pour la découverte de scénarios, nous considérons un seuil de réus‑

site basé sur le climat et un seuil politique : 152 MtCO2e d’émissions par an d’ici 2050, une

représentation de la stratégie canadienne à long terme, et des coûts cumulatifs nets qui sont

gratuits ou permettent de réaliser des économies. Nous déterminons qu’une taxe industrielle

substantielle sur le carboned’aumoins 270 $CAD/tCO2eest inévitable, que le développement

de lacapacitéde transmissionsupplémentairenedépassepas115%de l’absenced’interventions

et que les coûts d’investissement en isolation des bâtiments s’améliorent d’au moins 19%.

Notre travail souligne comment l’exploration systématique de modèles de simulation com‑

plexes peut exposer leurs dynamiques et contraintes sous‑jacentes tout en réduisant le biais

des analystes et en traitant correctement l’incertitude, soulignant l’importance pour la com‑

munauté de la modélisation de passer à un paradigme demodélisation exploratoire.
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1. Introduction
Traditionalmodelling for policy support suffers from three key limitations: 1) stakeholders dis‑

agree over assumptions, structure, and measurable outcomes, 2) gaps in understanding be‑

tweenmodelbuilders, policy‑makers, and thepublic overhowmodelling (and its conclusions)

should be used, and 3) neglect for the modellers’ biases in defining future scenarios a priori

(Shortridge and Zaitchik, 2018). Together, these limitations are known within the literature

as “Deep Uncertainty” (Lempert, Popper, and Bankes, 2003). This project applies techniques

from Deep Uncertainty to analyze the Canada Energy Policy Simulator model, developed by

thePembina Institute andEnergy Innovations, to show trade‑offsbetweenpossible policy sce‑

narios to reach the targets set out in Canada’s November 2016 Long TermStrategy submission

to theUNFCCC (Environment andClimateChangeCanada, 2016), andhowpolicy‑relevant sce‑

narios can be developed without modeller biases. The process would demonstrate how shift‑

ing where scenarios are defined to be analyzed and communicated can bridge gaps between

stakeholders, modellers, and policy‑makers. Finally, these approaches can also demonstrate

how robust policies can bemade.

The usefulness of models in policy support is not their complexity, but how they are ana‑

lyzed and used. Weaver et al. (2013) argue that modellers’ fixation over increasing resolution

and complexity is a major limitation in energy and climate models’ usefulness and persua‑

siveness in a policy context. And wheremodels have been used to craft policies, they provide

a snapshot of insights to craft static policies (Righetti et al., 2017). Despite the best efforts of

model builders, andagainst their ownknowledge,more time is usually spentonbuildingmod‑

els than exploring them for insights (Munson, 2012). Yet, complex models are not necessarily

more useful. Yue et al. (2018) note in their review of energy system optimization models that

most insufficiently or inadequately handle uncertainties, which limits analytical insight, lacks

robustness, andmaymislead decision‑makers.

Furthermore, model scenarios are commonly misused, especially within the climate sci‑

ence and policy domain (Pielke and Ritchie, 2020). When model builders simplify their analy‑

sis to a small set of scenarios, which often includes a “reference” or “business‑as‑usual” sce‑

nario, they implicitly associate a higher likelihood to those scenarios occurring (Shortridge
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and Zaitchik, 2018), even if they disclaim that these are only possible states of the world. As‑

sessing a limited set of scenarios also disposes consideration of other combinations of as‑

sumptions that may unexpectedly reach the same policy target (Lamontagne et al., 2018),

leaving the policy support incomplete.

Parametric and structural uncertainties of elements of energy transition models often re‑

flect conservative and static outlooks based on modellers’ contemporary understanding of

the world. Within the energy modelling space, the pace of technology deployment and price

forecasts for solar photovoltaic installations and batteries, among other technologies, are

commonlyunderestimated (Jaxa‑RozenandTrutnevyte, 2021; Evans, 2019; Phadkeetal., 2021)

andbiaspolicy‑makers towards lessaggressivepolicyapproaches. Modellersandpolicy‑makers

alike end up with a lagging perception of the world that requires frequent and iterative up‑

dates to reflect the rapid advancement in energy technologies, which can be cost‑prohibitive

and harms the reputation of modelling in general (Bankes, 1993). Similarly, traditional mod‑

elling approacheswill adjustmodel structures and parameters and calibratemodels until out‑

comesmay fit within an accepted range, but the complexity andnon‑linearity ofmodels limits

modellers from drawing such causal inferences. Many sets of inputs can lead to the same out‑

comes (Oreskes, Shrader‑Frechette, and Belitz, 1994).

Deep Uncertainty approaches address these model‑use limitations and provide a path‑

way formodellers tomore comprehensively analyze theirmodels. One core DeepUncertainty

method, exploratory modelling, is an approach to usemodels by exploring complex and non‑

linearbehaviourwithinmodelsacrossmanyuncertainties (Bankes, 1993). Usinganexploratory

modelling approach in energy policymodelling allows for further opportunities in policy anal‑

ysis, such as evaluating policy robustness and formulating adaptive policies, which is also

known as Robust Decision‑Making (RDM) (Lempert et al., 2006). It also communicates trade‑

offs between options more transparently. Lempert, Popper, and Bankes (2003), Shortridge

and Zaitchik (2018), Weaver et al. (2013), and Steinmann et al. (2020) and Murphy et al. (2004)

argue thatmodelling forpolicyanalysismustuseDeepUncertaintyapproaches likeexploratory

modelling and Robust Decision‑Making to both epistemologically incorporate uncertainties

and leave the aforementionedpolicymodelling trap. Whilemany existing energy systemmod‑
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elsavoidexploratoryapproaches,wedemonstratehowthesemethodscanbeapplied toCana‑

dian energy policy, with both policy‑related and scientific benefits.

2. Methods
2.1. The Model
In this analysis, we study the Energy Policy Simulator (EPS; also known as Energy Policy So‑

lutions), designed by Energy Innovation. The model is free and open‑source, and adapted for

many jurisdictions around theworld, covering 55%of global greenhouse gas (GHG) emissions.

Its insights have been used in government assessments, policy research from environmen‑

tal policy organizations, and in peer‑reviewed works (e.g. Gallagher et al. (2019), Tian et al.

(2019)).

The model takes an integrated assessment of various sectors as depicted in Figure 1. No‑

tably, energyproduction is not not explicitly tracked, only through supply anddemand. There‑

fore, policies that limit oil production are calculated exogenously and then integrated into the

model.

Figure 1: Stylized Structure of Energy Policy Simulator Model Structure
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The model is developed in Vensim, a program for System Dynamics models. Data is en‑

tered into the model directly or through Excel and CSV files. Relationships between variables

are defined through a combination of standard and differential equations.

Model and Data Source

In particular, weused themost recent branchof EPSadapted for CanadabyEnergy Innovation

and the Pembina Institute in 2018 and 2019 v1.4.3. EPS exists as both an interactivewebpage1

and as a Vensimmodel2. The data input to themodel are from publicly available government

sources and from early 2016. Where Canadian data was unavailable, US data was used in lieu

(Pembina Institute, 2019).

Model Parameters

The EPS model includes many parameters. The ones chosen for our study are the ones are

the same as the 184 inputs and 34 outcomes on the online version of the model (listed in Sec‑

tion A.2) except the boolean for a 100MtCO2e/year emissions cap on oil sands in Alberta. Most

policy parameters are defined as a variable within themodel, but the oil sands emission limit

is implemented in the “policy implementation schedule” function of EPS. We were unable to

replicate thewebmodel’s boolean control for the capwithoutmodifying themodel files;mod‑

ifying, verifying, and validating structural changes to the model was out of the scope of this

project. This choice is discussed further in paragraph 4.2.3.

We also include a comparison to the parameters chosen by the winner of the Pembina

Institute’s Youth Policy Design Competition (YPDC) (Urban, 2019), who did not enact the oil

sands limit. The Pembina Institute ran a policy design competition in 20193, asking youth to

use the model to design policies that meet Canada’s GHG targets at minimal economic and

political cost. The top three submissions’ reports were published online.

Within Vensim, we used the model integration parameters set by Pembina Institute and

Energy Innovation, notably, a one year time step and Euler integration method.
1https://canada.energypolicy.solutions/scenarios/home
2https://canada.energypolicy.solutions/docs/
3https://www.pembina.org/media‑release/student‑leaders‑design‑canadas‑climate‑and‑energy‑future

https://github.com/Energy-Innovation/eps-canada/releases/tag/1.4.3
https://canada.energypolicy.solutions/scenarios/home
https://canada.energypolicy.solutions/docs/
https://www.pembina.org/media-release/student-leaders-design-canadas-climate-and-energy-future
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2.2. Exploratory Modelling and Scenarios
As described in the introduction, exploratory modelling is critical to providing policy analy‑

sis in a deeply uncertain world (Steinmann et al., 2020). Specifically, we use the Exploratory

ModellingandAnalysis (EMA)Workbench (Kwakkel, 2017)4 asahypervisor thatdrivesmultiple

instances of Vensim and implement the various parameters sampled. The Workbench allows

us to vary all model parameters at will, and study the effects on model outcomes. We ran all

experiments using an 8‑core AMD EPYC virtual machine with 20 GB of RAM on Google Cloud

Platform.

Global Sensitivity Analysis

To understand themost influential parameters in the EPS,we performglobal sensitivity analy‑

sis using the Sobol’ (sic)method (Sobol’, 1990) andSaltelli parameter sampling (Saltelli, 2004).

Using global sensitivity analysis is preferable to local sensitivity analysis as it captures inter‑

actions between parameters, and cover the entire uncertainty space (Saltelli et al., 2019). Our

analysis utilizes the SALib package (Herman and Usher, 2017) implemented in the EMA Work‑

bench. Wegenerated374,000simulation runs. Weperformedtheanalysis across theextended

parameter ranges described in Section A.2, but also validated the results by re‑running the

analysis across theoriginalparameter rangesdefinedby thePembina Institute (extracted from

the EPS website). Of the 34 available outcomes, we found nine that were of particular policy

interest:

1. Cumulative CO2 emissions between 2017 and 2050

2. CO2 emissions in 2050

3. Change consumer cash flow

4. Change government cash flow

5. Change in industry cash flow

6. Lives saved

7. Change in outlays (total costs) across all sectors
4https://github.com/quaquel/EMAworkbench/

https://github.com/quaquel/EMAworkbench/
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8. Change in outlays (total costs) across all sectors, assuming revenue neutral carbon tax

9. Other social benefits

Scenario Discovery

Conventional scenario‑based planning approaches first define scenarios of interest, and then

apply these to a simulationmodel, with the intent to compare the outcomes. Scenario discov‑

ery (Bryant and Lempert, 2010) shifts the creation of scenarios from what the analyst deems

as likely or representative archetypes to an output of model analysis. A large sample of para‑

metric configurations is simulated, and then the parameter ranges which generate outcomes

of interest are identified using classification and induction algorithms. Scenario discovery dif‑

fers from sensitivity analysis by looking through model outputs for interesting inputs rather

than adjusting inputs to determine their impacts.

Scenario discovery requires defining a success condition against which every model run

can be evaluated. In our case, we used an 80% reduction in GHG emissions relative to 2005

by 2050, which is the target in Canada’s November 2016 Long Term Strategy submission (En‑

vironment and Climate Change Canada, 2016), as the primary metric. Based on the Pembina

Institute’s work, this is represented by an emission level of 152 MtCO2e/yr (Pembina Institute,

2019). We also look for policy packages that cumulatively cost nothing or savemoney in terms

of total outlays, which includes capital, fuel, and operations and maintenance costs, as well

as subsidies and taxes. While any set of criteria can be run, we chose these for simplicity to

analyze and communicate. Then, we specified 600,000 experiments using Latin Hypercube

sampling for the parameters, which samples eachmember of the parametric set at least once

across all the scenarios and ismore representative of a population thanMonte Carlo sampling

(McKay, Beckman, and Conover, 1979). The experiments took a total of 15 hours to complete.

Next, we used the Patient Rule InductionMethod (PRIM), a rule inductionmachine learning al‑

gorithm (FriedmanandFisher, 1999), to identify subspacesof the inputparameters thatwould

lead to policy success.
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3. Results
3.1. Integration Errors
While conducting our model exploration, we discovered numerical integration errors in EPS

for certain combinations of policy levers. We used spike detection routines to remove runs

with integration errors from the data set for scenario discovery. Out of a set of 600,000 runs,

55,139 (9.0%) runs had integration errors, leaving 544,861 remaining runs. For global sensi‑

tivity analysis, a highly specific sampling scheme was used to reduce the number of required

simulation runs, barring the removal of individual runs with integration errors. Instead, we

conducted the global sensitivity analysis at an earlier time step (t = 2027) in the model runs,

at which integration errors were not yet present.

(a) GHG (b) Costs

Figure 2: Errors found in scenario discovery output data using spike detection. These runs were excluded from

further analysis.

3.2. Global Sensitivity Analysis
In Figure 3, we plot the first‑order effects S1 for the most influential model inputs (based on

total‑order effects, where ST > 0.05) for a variety of model outputs of interest. A number of

interesting patterns are apparent. Carbon Tax [industry sector] is the dominant input param‑

eter, affecting nearly all outputs of interest to some degree, and being the only parameter of

relevance forwhat are arguably themost important outputs (cumulative and final annualGHG

emissions) in the context of long‑term climate policy. It also appears as a relevant parameter
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for a number of outputs which are not traditionally associatedwith the effects of a carbon tax,

such as social benefits. Conversely, Carbon Tax [transportation sector] is virtually irrelevant,

impacting only government cash flow.

Further points of interest are that a subsidy on light electric vehicles seems to be primar‑

ily a method of transferring money from government to citizens, with no tangible climate ef‑

fect. Additionally, subsidizing biomass negatively impacts mortality through increased harm‑

ful particulate emissions. For a full overview of these sensitivities and their confidence inter‑

vals, see Section A.3.

Figure 3: Sensitivities of model outputs (top) to inputs (left). Only the most sensitive (total order effect ST>

0.05) inputs are shown. Dot size represents first order effect S1.

Weadditionallyexamined theglobal sensitivityanalysis resultsbyspecificoutcome,where

we could also discern the relationship between the inputs. That is to say, since the global ap‑

proach varies parameters simultaneously, this approach shows the collective influence of pa‑

rameter combinations. For GHG emissions (Figure 4), we found that the Carbon Tax [industry

sector] has a significantly influence than the next two most influential parameters, achieving

afforestation and reforestation and capturing fugitivemethane emissions. The latter two had

a larger impact when used together than with the carbon tax. When viewing costs (Figure 5),

we found transmission capacity and building insulation costs to be strongly linked. Both gaso‑
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line and battery electric vehicles were strongly linked, though the analysis does not show the

direction of the link.

Carbon Tax[industry sector]

Fraction of Afforestation
 and Reforestation Achieved

Fraction of Methane
 Capture Opportunities

 Achieved

ST
S1
S2

Figure 4: First, second, and total order sensitivities for most influential input parameters for outcome Output

Total CO2e Emissions, with an inclusion threshold of ST > 0.02 due to the dominance of Carbon Tax [industry

sector]. At a threshold this low, stochastic effects may dominate the true sensitivities.

3.3. Scenario Discovery
Our sampled results yielded a range of runs with aminimum of 32 and 403 MtCO2e emissions

in 2050 and the total cumulative costs until 2050 ranges from ‑4249–5747 billion 2015 CAD

(depicted in Figure 6). The winner of the Pembina Institute Youth Policy Design Competition

(Urban, 2019) created a policy package by changing 58 policies from their default parameters,

but it did not perform aswell as the average of our set in 2050 GHG emissions, but was slightly

cheaper than our results (see Figure 6c).

Using the PRIM algorithm, we found three restricted dimensions: 1) carbon tax in industry

($272.05–800 CAD), 2) increase in electricity transmission capacity (0–115%), and 3) reduction

inbuilding envelope capital costs (19–100%). Thedistributionof successful caseswithin these

ranges is important to understand if these restricted ranges are useful and are depicted in
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Percentage Increase in
 Transmission Capacity vs BAU

RnD Building Capital
 Cost Perc Reduction[envelope]

RnD Transportation
 Capital Cost

 Perc Reduction
[battery electric vehicle]

RnD Transportation
 Capital Cost

 Perc Reduction
[gasoline vehicle]

ST
S1
S2

Figure 5: First, second, and total order sensitivities for most influential input parameters for outcome Output

Total Change in Outlays with Revenue Neutral Carbon Tax, with an inclusion threshold of ST > 0.05. The influence

of transmission capacity is apparent, along with its joint effect with reduced construction costs.

(a) (b) (c)

Figure 6: Min‑max ranges of scenario discovery sampled runs (blue) compared to Youth Policy Design Contest

winner (orange). (a) GHG emissions per year (b) Policy cost per year (c) Cumulative policy cost until 2050.

Roughly half or more of our runs outperform the Youth Policy Design Contest winner’s outputs.

Figure 7). None of the results show robust conclusions, but there are strong patterns. A high

industrial carbon can still fail almost as often as it succeeds, but the lower the transmission

capacity increase, thebetter theoutcomes. Belowarounda50% increase,morecases succeed
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than fail (the volume of successful runs noticeably exceeds failed runs). The more the capital

costs of building envelopes, or building insulation, reduce, the higher the chance of success,

though it never becomesmore likely than failure.

Figure 7: Pairplot of restricted dimensions in first GHG emissions subspace identified by PRIM. The density

plots show the distribution of successful and failed runs for each parameter at its range of sampled values. The

red box in the scatter plots shows the subspace for the dimension on the x axis.

PRIMcanbeprone to randomness. To test the robustness of these results, Bryant andLem‑

pert (2010) proposed the resampling and quasi p‑value tests. Resampling performs PRIM re‑

peatedly and determines if the coverage and density values can be reproduced. Resampling

10 times gave 100% reproducibility in results. The quasi p‑value (qp) is based on a null hy‑

pothesis that each parameter’s range was found out of pure chance. In all three restricted
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dimensions, the ranges were defined with a qp of less than 0.0001. In all these cases, the null

hypothesis could be rejected.

4. Discussion
4.1. Interpretation and Validity of Results
The high degree of overlap between the influential parameters identified independently by

global sensitivity analysis and scenario discovery indicates our analytical results are robust

and valid. In both cases, we found the same three parameters to be important to reducing

GHGs andminimizing costs: industrial carbon tax, transmission capacity, and the capital cost

of building insulation. Compared to common GHG abatement cost analyses, these are intu‑

itive. Energy efficiency is the cheapest formof GHG reductionswith negative abatement costs,

andbuildingheating represents largeportionsof energydemand. Increasingelectricity capac‑

ity while electrifying is useful, but if done more than needed, capital costs begin to outweigh

induced benefits. Carbon tax is widely seen as the most economically‑efficient approach to

reduce GHGs (Howard and Sylvan, 2015; Climate Leadership Council, 2019), and this model

reinforces that view (or vice versa).

While the relationships between parameters found by global sensitivity analysis are inter‑

esting, they aremore useful for understanding the complex energy system, as represented by

themodel, rather than answering specific policy questions. In this case, the link between bat‑

tery and gasoline vehicles (Figure 5) probably indicates that 1) the transportation sector has

a large cost impact and 2) consumers respond strongly to the costs of vehicles. The relation‑

ship between methane capture and afforestation and reforestation is likely because a strong

industrial carbon tax reduces the need for their implementation, but without the tax, the two

should be deployed together.

The scenario discovery results did not illuminate specific policy ranges that would gen‑

erate a high confidence for success in both reducing emissions and being either free or cost‑

saving policy packages, at best showing ranges where success could be slightly on‑par with

failure. To be clear, this means that if just these three parameters were fixed within some
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range, there would be around a 50% chance of reaching the specific policy target regardless

of what all other 181 parameter values are, and none of the others had a strong influence on

the outcomes.

That the global sensitivity analysis results were themselves validated by repeating the

analysis across a different set of input parameter ranges (as described in Section 2.2.1), with

broadly similar outcomes. We also scenario discovery with cases where policies causedmore

harm to lives than doing nothing to understand the utility of the scenario discovery approach.

Focus on Carbon Tax

Through both global sensitivity analysis and scenario discovery, we identified carbon tax on

industry as the most important parameter in the EPS. However, this parameter is so influ‑

ential that it raises questions about the model’s structure and behavior. As Mercure et al.

(2019) showed, the underlying economic assumptions within integrated models, especially

surrounding how innovation is funded, can lead to massively different analytical results. In

EPS’s case, the structure of cash flow between government, industry, and consumers could

fundamentally leave industry more vulnerable to policy levers. In other words, the assump‑

tions that define economic interactions in EPS could bewhymodel outputs are so sensitive to

the industrial carbon tax. Furthermore, carbon pricing policy has considered impacts to trade

exposure, or competitiveness, of industrial carbon pricing and granted free allowances. How‑

ever, this model does not include trade dynamics, which potentially leaves the pricing lever

more effective than it would be in the real world.

Additionally, industrial behaviours are better understood than consumer and government

ones. They are also easier to aggregate and represent mathematically. In the EPS (see Figure

Figure 1), business relationships are explicitly defined, whereas social and political aspects

that consumers and governments are more exposed to are less represented, if at all. This

may bias model outcomes against what is easily represented. Finally, some critical aspects

of industry are not captured at all, such as employment, again introducing a potential bias to

measurable outcomes.
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Validation through Scenario Discovery on Lives Lost

In our exploration, we discovered models runs where the number of lives saved became neg‑

ative. To understand the driving factors behind this undesirable outcome and to validate the

scenario discovery approach on related policy question, we also applied scenario discovery

to cases where lives saved were negative at any point in the time series. These results were

resampled 10 times and had 100% reproducibility. We found that the electricity production

subsidy for biomass needed to be above 18%, new natural gas non‑peaker power plants need

to be banned, at least 5.1 GWof nuclear but less than 8096MWhard coal‑based electricity gen‑

erators need to additionally shut down per year. These ranges and the distribution of cases

are depicted in Figure 8. None of the conclusions are strong, but these important parameters

make intuitive sense: weak policies to replace coal‑fired electricity generation and strong sup‑

port to implement biomass fuels leads to evenmore particulate pollution than doing nothing.

4.2. Usability for Policy Design
Exploratory Modelling Adds Value

Exploratory modelling added value to this analysis in two main ways: 1) we discovered the

most important policies and ranges for these policies to meet the policy target and 2) we dis‑

covered model outcomes and behaviours that we probably would not have otherwise, or at

least without spending much time within the model.

Global sensitivity analysis quantified how dominant the industrial carbon tax is and the

irrelevance of other parameters. Combined with scenario discovery, we can confidently con‑

clude –basedon themodel’s interpretationof theworld – that policy decisions are only impor‑

tant for a small subset of policies. Government funded innovation should focus more on just

building insulation and not any other sector. Compared to the real world where analytical

resources are stretched between many policy fields, our results advocate for a significantly

more lean approach. Similarly, our analytical approach automates policy design through a

systematic approach. Whereas the YPDC winner highlighted how policy is often made by in‑

crementally adjusting levers – while simultaneously assessing factors like political feasibility

and technological probability, which could bias modeller – scenario discovery narrows the
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Figure 8: Pairplot of restricted dimensions for cases where lives are lost. Policies that slow down the phase‑out

of coal‑fired electricity production and promote biomass use for electricity leads to more deaths, most likely

due to additional particulate pollution.

scope of analysis and shifts the consideration of additional factors to later step. For exam‑

ple, if modellers and forecasters had sought to discover how awide range of battery costs can

or cannot meet policy outcomes, they would not have to react to the recent report that bat‑

tery costs are already as low as others predicted would only occur beyond 2040 (Phadke et

al., 2021). Scenario discovery would have saved modellers time in their minute adjustments‑

analysis cycle and in reassessing recommendations because a policy parameter is no longer

valid.

Exploratorymodellingalso illuminated themanycaseswith integrationerrors. Whenmod‑

els are built and validated for specific scenarios or purposes, they may make assumptions



4.2 Usability for Policy Design 20

that could become internally inconsistent and yield a model unstable outside of those spe‑

cific cases. We showed how runningmany scenarios, performing global rather than local sen‑

sitivity analysis, and scenario discovery can be used to reveal and debug special cases. Rule

induction is particularly useful here because it could theoretically show thatmodel errors can

come fromdifferent regions of the input space. Without considering parameters together or a

wide range of scenarios that are less influenced by modeller biases, analysts would be signif‑

icantly more vulnerable to the nonuniqueness and overfitting problems that jeopardize the

crediblity of their conclusions (Oreskes, Shrader‑Frechette, and Belitz, 1994).

Fast Models are Better than SlowModels

As exploratory modelling requires many model runs to gather actionable insights, so models

with fast run times are preferable. These models are often simpler, tending towards uncer‑

tainty rather than complexity – a trade‑off that needs to bewell‑exposed for scientific and pol‑

icy purposes (Helgesonet al., 2020; Spiegelhalter andRiesch, 2011). However, whenassessing

topics such as climate risks, addressing uncertainty is critical, especially because the param‑

eters and structures of social‑techno‑political and Earth’s climate system are irreducibly un‑

certain (Reilly, 2001; Smith and Stern, 2011). The EPS model, with a run time of less than 0.1

seconds on our hardware, is an intriguing candidate for a model combining comprehensive‑

ness, extensive uncertainties and high performance.

Manyother integratedmodels in theenergyandclimatedomains takehoursordays to run,

limiting the ability of modellers to explore these systemically. With such a fast model, it is sur‑

prising that even EPS’s technical documentation (see Section A.2) recommends only testing

different parameters for at most 10 different policies simultaneously or otherwise just com‑

paring policy packages. We believe thatmodellers should favour addressing uncertainty over

complexity, especially given recent advances in computational power and the accessibility of

low‑cost cloud computing.

Model Diversity and Transparency

EPS is a model with integration errors, a focus on technology approaches to climate mitiga‑

tion, and a very influential industrial carbon tax. Yet, all models contain their biases and sets
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of parametric and structural assumptions. (Thompson and Smith, 2019) iterate that models

are not only chaotically sensitive to initial conditions, but also to structures. Jaxa‑Rozen and

Trutnevyte (2021), in a review of 1,550 scenarios, showed that solar photovoltaic technology

forecasts are highly dependent on the type of organization, model, and policy assumptions.

(Oreskes, Shrader‑Frechette, and Belitz, 1994) also argue that it is impossible to ever validate

large and complex models, like energy system ones. Therefore, we find it critically important

for the energy modelling community in Canada and elsewhere to reasoning across a model

ensemble (Bankes, 1993), a practice seen in other domains (e.g. (Taylor, Stouffer, and Meehl,

2012)). Furthermore, we also recognize the importance of open‑source modelling, which is

critical to scientific rigour through reproducibility and peer review (Nikolic et al., 2019). Mod‑

els or ensembles that are more transparent are more credible for use in policy.

In scan of the Energy Modelling Institute’s inventory of models that allow national energy‑

GHGpolicy analysis, we found five simulationmodels, ofwhichonly one is open‑source (ours):

• gTech, calibrated to 2020 for most sectors and commonly used across Canada,

• CanESS, also an SDmodel, but that runs on a boutique proprietary software and is cali‑

brated to 2013,

• E3MC, developed by Environment and Climate Change Canada and updated to 2020,

• Energy System Optimization Model, a model possibly used to support just one peer‑

reviewed article (Zhou et al., 2015), and

• EPS

We looked for the simulation tag specifically because it is needed to perform exploratory

analysis, thoughoptimizationmodels canalsobeconverted intosimulationmodels (e.g. Lingeswaran

(2019) adapted DICE (Nordhaus, 2014) for scenario discovery and other Deep Uncertainty ap‑

proaches). We encourage future work to assess model ensembles.

Data andModel Limitations Since this study focused onmodel analysis methods, we only

briefly review data limitations. The data itself does not jeopardize our approach, but could in‑

fluence our conclusions. EPS has been in active development but onlymost recently updated
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in 2019. Its data are from 2016‑2017 to allow Pan‑Canadian Framework policies to compare

against their absence. Neither its structures nor its data reflect recent developments in in‑

dustry, policy, and science. As noted previously, all of its data is gathered from government

sources and American data are used in lieu of unavailable Canadian data.

Similarly, we did not deeply investigate themodel structure or verify or validate it beyond

understanding the integration errorswe found. One source of these errorswas that themodel

definesaminimumcontributionofnatural gaspeakerplants to theelectricity grid, butour sce‑

narios had widespread and large uptake in distributed solar photovoltaics that reduced grid

demand below that peaker plant minimum. Experts could likely argue both for and against

this type of scenario.

Because the oil sands limit control is not defined as a boolean in the Vensim model, our

analysis could not consider this policy. Instead, it is defined as a policy implemented over

time that overrides all industrial emissions output in themodel to enforce the cap’s effect. We

would have needed to add a new variable, which would take time to verify and validate, and

overwrite one of the input data files butwith the oil sand limit removed. Moreover, thismodel

does not allow one to change the emissions limit, but rather just whether it fits with the 100

Mt limit or not. A greater question from policymakers would be what the cap should be.

Policy Limitations Themost conventionally obvious policy limitation in this version of the

EPS model is that it may not include some policy structures that policies suggested beyond

the 2016 Pan‑Canadian Framework might entail. Though we argued earlier that uncertainty

treatment is the most important limitation for policy usefulness, none of the policy combina‑

tions can lead to net‑zero emissions by 2050 in this model. As Canada has now announced

a net‑zero target, it illuminates the limitations of this model to explore options to meet the

current policy objectives and suggests it may need to be updated to be relevant.

It is also important to note that this model does not account for structural changes in en‑

ergy markets, like electricity market reform or feed‑in‑tariffs explicitly, mechanisms like per‑

cent adoptionof distributed solar photovoltaics canact asproxies, just as a flat economy‑wide

carbon price can approximate the impacts of policies like cap and trade systems, but further
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investigation of the model structural is required to verify this approach. Donges et al. (2018)

and Otto et al. (2020) criticize integrated modelling for energy and climate policy to overly

favouring technology, and instead challenge the field to consider how policy changes may

have social effects (and vice versa), which could changemodel parameters and structures.

4.3. State of Work and Future Research
We have given some initial glimpses into how exploratorymodelling can be applied to energy

models in general, and the EPS in particular. A number of future research directions can be

envisioned. Scenario discovery could be performed for alternative success conditions, such

as combinations of environmental, fiscal and social targets. On the model side, EPS can be

updated to version 3 (already available for the United States of America) to include more re‑

cent policy considerations andmacroeconomic outputs, like GDP and jobs that are important

to policy analysis. Also updating data parameters can offer outputs directly comparable to

current policy discussions, which could improve the persuasiveness of outcomes;model com‑

plexity is relevant to decision‑makers’ intuitions and exploratorymodelling asks for a broader

paradigm shift in howmodels are used and communicated.

Most importantly, for these authors and the broader energy modelling community, Deep

Uncertainty approaches can not only mitigate some of the most critical issues in the domain,

but can also add value in other ways. Recently, Deep Uncertainty techniques that extend sce‑

nario discovery to finding robust policy pathways have been used to plan the future of Rot‑

terdam’s port collaboratively with stakeholders (Cuppen et al., 2020). This project also show‑

cased how Deep Uncertainty approaches can be used to incorporate vastly different social,

technical, and political perspectives in a participatory and constructive framework. A simi‑

lar approach can be easily applied to complex Canadian challenges across the country. Lem‑

pert (2018) argue that Deep Uncertainty is critical for developing Long Term Strategies, an

approach Canada has not taken to‑date.
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5. Conclusion
Using a simulationmodel of energy and climate, we show through exploratorymodelling that

a carbon tax on industry of at least $270 CAD/tCO2e is the most important policy lever for re‑

ducingGHGemissions 80% inCanada 2050while costing nothing or only savingmoney across

households, industry, and government. To minimize the cost of policy packages, electricity

transmission capacity should be built – but not more than 115% what would have without

intervention. Apart from innovation encouraged by the carbon tax, resources should be di‑

rected specifically to innovation in the building insulation to drive its cost down at least 19%.

Around half of our results outperform the policy package that won the 2019 Pembina Insti‑

tute Youth Policy Design Competition while using only three policies and accounting for un‑

certainties in all other parameters, showing that our approach can generate robust results

withminimal analyst bias and save time andmoney spent on incrementally analyzingmodels

and updating them frequently to match data changes. The value of systematic model explo‑

ration is further cemented by the fact that we discovered technical errors in themodel during

our research. This shows that exploratory modelling maximizes the return on investment in

creating simulation models of complex societal problems by systematically exploring their

parameters, structure and behavior. Future work for this model include updating it to more

recent specifications and data, especially to analyze policies and targets announced after the

initial Pan‑Canadian Framework, and apply more advanced design algorithms to identify ro‑

bust andadaptivedecarbonizationpolicypathways. Wealso call formoremodel diversity and

ensemble analysis within the energymodelling domain to further minimizemodelling biases

and provide better policy analysis.
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A. Appendix
A.1. Nomenclature

Acronym Definition

GHG Greenhouse gas

PRIM Patient Rule‑Induction Method

EPS Energy Policy Simulator (Solutions)

EMAWorkbench Exploratory Modelling and Analysis Workbench

tCO2e Tons of carbon dioxide‑equivalent (GHG emisisons)

YPDC Youth Policy Design Competition

A.2. Policy Levers and Ranges
We used 184 levers in the EPS model. The table below details all of these, separated by eight

sectors: transportation; buildings; electricity; industry; agriculture, land use, and forestry;

district heat, cross‑sector, and research and development. Technical documentation on the

EPS model, which explains these parameters and related assumptions, is hosted at https:

//us.energypolicy.solutions/docs/index.html.

 https://us.energypolicy.solutions/docs/index.html
 https://us.energypolicy.solutions/docs/index.html
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Table 1: Model Parameters and Ranges

Parameter Name Parameter Type Minimum Maximum

Transportation Sector Policies

Percentage Reduction of Separately Regulated Pollutants[LDVs] Real 0 1

Percentage Reduction of Separately Regulated Pollutants[HDVs] Real 0 1

Percentage Reduction of Separately Regulated Pollutants[aircraft] Real 0 1

Percentage Reduction of Separately Regulated Pollutants[rail] Real 0 1

Percentage Reduction of Separately Regulated Pollutants[ships] Real 0 1

Percentage Reduction of Separately Regulated Pollutants[motorbikes] Real 0 1

Boolean EV Perks Categorical 0 1

Additional Minimum Required EV Sales Percentage[passenger LDVs] Real 0 1

Additional Minimum Required EV Sales Percentage[freight LDVs] Real 0 1

Additional Minimum Required EV Sales Percentage[passenger HDVs] Real 0 1

Additional Minimum Required EV Sales Percentage[freight HDVs] Real 0 1

Additional Minimum Required EV Sales Percentage[passenger motorbikes] Real 0 1

Additional EV Subsidy Percentage[passenger LDVs] Real 0 1

Additional EV Subsidy Percentage[freight HDVs] Real 0 1

LDVs Feebate Rate Real 0 1

Percentage Additional Improvement of Fuel Economy Std[gasoline vehicle LDVs] Real 0 1

Percentage Additional Improvement of Fuel Economy Std[diesel vehicle HDVs] Real 0 1

Percentage Additional Improvement of Fuel Economy Std[nonroad vehicle aircraft] Real 0 1

Percentage Additional Improvement of Fuel Economy Std[nonroad vehicle rail] Real 0 1

Percentage Additional Improvement of Fuel Economy Std[nonroad vehicle ships] Real 0 1

Percentage Additional Improvement of Fuel Economy Std[gasoline vehicle motorbikes] Real 0 1

Additional LCFS Percentage Real 0 1

Fraction of TDM Package Implemented[passenger] Real 0 1

Fraction of TDM Package Implemented[freight] Real 0 1

Buildings Sector Policies

Percent New Nonelec Component Sales Shifted to Elec[urban residential] Real 0 1

Percent New Nonelec Component Sales Shifted to Elec[rural residential] Real 0 1

Percent New Nonelec Component Sales Shifted to Elec[commercial] Real 0 1



A.2
PolicyLeversand

Ranges
33

Table 1 continued from previous page

Parameter Name Parameter Type Minimum Maximum

Reduction in E Use Allowed by Component Eff Std[heating urban residential] Real 0 1

Reduction in E Use Allowed by Component Eff Std[cooling and ventilation urban residential] Real 0 1

Reduction in E Use Allowed by Component Eff Std[envelope urban residential] Real 0 1

Reduction in E Use Allowed by Component Eff Std[lighting urban residential] Real 0 1

Reduction in E Use Allowed by Component Eff Std[appliances urban residential] Real 0 1

Reduction in E Use Allowed by Component Eff Std[other component urban residential] Real 0 1

Reduction in E Use Allowed by Component Eff Std[heating rural residential] Real 0 1

Reduction in E Use Allowed by Component Eff Std[cooling and ventilation rural residential] Real 0 1

Reduction in E Use Allowed by Component Eff Std[envelope rural residential] Real 0 1

Reduction in E Use Allowed by Component Eff Std[lighting rural residential] Real 0 1

Reduction in E Use Allowed by Component Eff Std[appliances rural residential] Real 0 1

Reduction in E Use Allowed by Component Eff Std[other component rural residential] Real 0 1

Reduction in E Use Allowed by Component Eff Std[heating commercial] Real 0 1

Reduction in E Use Allowed by Component Eff Std[cooling and ventilation commercial] Real 0 1

Reduction in E Use Allowed by Component Eff Std[envelope commercial] Real 0 1

Reduction in E Use Allowed by Component Eff Std[lighting commercial] Real 0 1

Reduction in E Use Allowed by Component Eff Std[appliances commercial] Real 0 1

Reduction in E Use Allowed by Component Eff Std[other component commercial] Real 0 1

Boolean Improved Contractor Edu and Training Categorical 0 1

Min Fraction of Total Elec Demand to be Met by Distributed Solar PV Real 0 1

Perc Subsidy for Distributed Solar PV Capacity Real 0 1

Boolean Improved Device Labeling Categorical 0 1

Fraction of Commercial Components Replaced Annually due to Retrofitting Policy[heating] Real 0 1

Fraction of Commercial Components Replaced Annually due to Retrofitting Policy[cooling and ventilation] Real 0 1

Fraction of Commercial Components Replaced Annually due to Retrofitting Policy[envelope] Real 0 0.1

Fraction of Commercial Components Replaced Annually due to Retrofitting Policy[lighting] Real 0 0.1

Fraction of Commercial Components Replaced Annually due to Retrofitting Policy[appliances] Real 0 0.1

Fraction of Commercial Components Replaced Annually due to Retrofitting Policy[other component] Real 0 0.1

Boolean Rebate Program for Efficient Components[heating] Categorical 0 1

Boolean Rebate Program for Efficient Components[cooling and ventilation] Categorical 0 1
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Table 1 continued from previous page

Parameter Name Parameter Type Minimum Maximum

Boolean Rebate Program for Efficient Components[appliances] Categorical 0 1

Electricity Sector Policies

Boolean Ban New Power Plants[hard coal es] Categorical 0 1

Boolean Ban New Power Plants[natural gas nonpeaker es] Categorical 0 1

Boolean Ban New Power Plants[hydro es] Categorical 0 1

Percent Change in Electricity Exports Real ‑0.5 1

Percent Change in Electricity Imports Real ‑0.5 1

Fraction of Additional Demand Response Potential Achieved Real 0 1

Annual Additional Capacity Retired due to Early Retirement Policy[hard coal es] Real 0 10000

Annual Additional Capacity Retired due to Early Retirement Policy[nuclear es] Real 0 10000

Additional Battery Storage Annual Growth Percentage Real 0 1

Percentage Increase in Transmission Capacity vs BAU Real 0 2

Boolean Use Non BAUMandated Capacity Construction Schedule Categorical 0 1

Nuclear Capacity Lifetime Extension Real 0 30

Percentage Reduction in Plant Downtime[natural gas nonpeaker es preexisting retiring] Real 0 1

Percentage Reduction in Plant Downtime[onshore wind es newly built] Real 0 1

Percentage Reduction in Plant Downtime[solar PV es newly built] Real 0 1

Percentage Reduction in Plant Downtime[offshore wind es newly built] Real 0 1

Percent Reduction in Soft Costs of Capacity Construction[onshore wind es] Real 0 1

Percent Reduction in Soft Costs of Capacity Construction[solar PV es] Real 0 1

Percent Reduction in Soft Costs of Capacity Construction[offshore wind es] Real 0 1

Percentage TnD Losses Avoided Real 0 1

Additional Renewable Portfolio Std Percentage Real 0 1

Subsidy for Elec Production by Fuel[nuclear es] Real 0 100

Subsidy for Elec Production by Fuel[onshore wind es] Real 0 100

Subsidy for Elec Production by Fuel[solar PV es] Real 0 100

Subsidy for Elec Production by Fuel[solar thermal es] Real 0 100

Subsidy for Elec Production by Fuel[biomass es] Real 0 100

Subsidy for Elec Production by Fuel[offshore wind es] Real 0 100
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Table 1 continued from previous page

Parameter Name Parameter Type Minimum Maximum

Subsidy for Elec Production by fuel[geothermal es] Real 0 100

Industry Sector Policies

Fraction of Cement Clinker Substitution Made Real 0 1

Fraction of Potential Cogeneration and Waste Heat Recovery Adopted Real 0 1

Fraction of Energy Savings from Early Facility Retirement Achieved Real 0 1

Percentage Improvement in Eqpt Efficiency Standards above BAU[cement and other carbonates] Real 0 1

Percentage Improvement in Eqpt Efficiency Standards above BAU[natural gas and petroleum systems] Real 0 1

Percentage Improvement in Eqpt Efficiency Standards above BAU[iron and steel] Real 0 1

Percentage Improvement in Eqpt Efficiency Standards above BAU[chemicals] Real 0 1

Percentage Improvement in Eqpt Efficiency Standards above BAU[mining] Real 0 1

Percentage Improvement in Eqpt Efficiency Standards above BAU[waste management] Real 0 1

Percentage Improvement in Eqpt Efficiency Standards above BAU[agriculture] Real 0 1

Percentage Improvement in Eqpt Efficiency Standards above BAU[other industries] Real 0 1

Fraction of Hard Coal Use Converted to Other Fuels Real 0 1

Fraction of Natural Gas Use Converted to Other Fuels Real 0 1

Fraction of Methane Capture Opportunities Achieved Real 0 1

Fraction of Methane Destruction Opportunities Achieved Real 0 1

Fraction of F Gases Avoided Real 0 1

Fraction of Addressable Process Emissions Avoided via Worker Training Real 0 1

Agriculture Land Use and Forestry Policies

Fraction of Afforestation and Reforestation Achieved Real 0 1

Fraction of Avoided Deforestation Achieved Real 0 1

Fraction of Forest Set Asides Achieved Real 0 1

Fraction of Abatement from Cropland Management Achieved Real 0 1

Fraction of Improved Forest Management Achieved Real 0 1

Fraction of Abatement from Livestock Measures Achieved Real 0 1

District Heat Sector Policies
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Table 1 continued from previous page

Parameter Name Parameter Type Minimum Maximum

Fraction of Non CHP Heat Production Converted to CHP Real 0 1

Cross‑Sector Policies

Fraction of Potential Additional CCS Achieved Real 0 1

Carbon Tax[transportation sector] Real 0 800

Carbon Tax[electricity sector] Real 0 800

Carbon Tax[residential buildings sector] Real 0 800

Carbon Tax[commercial buildings sector] Real 0 800

Carbon Tax[industry sector] Real 0 800

Percent Reduction in BAU Subsidies[hard coal] Real 0 1

Percent Reduction in BAU Subsidies[natural gas] Real 0 1

Percent Reduction in BAU Subsidies[petroleum gasoline] Real 0 1

Percent Reduction in BAU Subsidies[petroleum diesel] Real 0 1

Percent Reduction in BAU Subsidies[jet fuel] Real 0 1

Additional Fuel Tax Rate by Fuel[electricity] Real 0 1

Additional Fuel Tax Rate by Fuel[hard coal] Real 0 1

Additional Fuel Tax Rate by Fuel[natural gas] Real 0 1

Additional Fuel Tax Rate by Fuel[petroleum gasoline] Real 0 1

Additional Fuel Tax Rate by Fuel[petroleum diesel] Real 0 1

Research & Development Levers

RnD Building Capital Cost Perc Reduction[heating] Real 0 1

RnD Building Capital Cost Perc Reduction[cooling and ventilation] Real 0 1

RnD Building Capital Cost Perc Reduction[envelope] Real 0 1

RnD Building Capital Cost Perc Reduction[lighting] Real 0 1

RnD Building Capital Cost Perc Reduction[appliances] Real 0 1

RnD Building Capital Cost Perc Reduction[other component] Real 0 1

RnD CCS Capital Cost Perc Reduction Real 0 1

RnD Electricity Capital Cost Perc Reduction[hard coal es] Real 0 1

RnD Electricity Capital Cost Perc Reduction[natural gas nonpeaker es] Real 0 1
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Table 1 continued from previous page

Parameter Name Parameter Type Minimum Maximum

RnD Electricity Capital Cost Perc Reduction[nuclear es] Real 0 1

RnD Electricity Capital Cost Perc Reduction[hydro es] Real 0 1

RnD Electricity Capital Cost Perc Reduction[onshore wind es] Real 0 1

RnD Electricity Capital Cost Perc Reduction[solar PV es] Real 0 1

RnD Electricity Capital Cost Perc Reduction[solar thermal es] Real 0 1

RnD Electricity Capital Cost Perc Reduction[biomass es] Real 0 1

RnD Electricity Capital Cost Perc Reduction[natural gas peaker es] Real 0 1

RnD Electricity Capital Cost Perc Reduction[lignite es] Real 0 1

RnD Electricity Capital Cost Perc Reduction[offshore wind es] Real 0 1

RnD Industry Capital Cost Perc Reduction[cement and other carbonates] Real 0 1

RnD Industry Capital Cost Perc Reduction[natural gas and petroleum systems] Real 0 1

RnD Industry Capital Cost Perc Reduction[iron and steel] Real 0 1

RnD Industry Capital Cost Perc Reduction[chemicals] Real 0 1

RnD Industry Capital Cost Perc Reduction[mining] Real 0 1

RnD Industry Capital Cost Perc Reduction[waste management] Real 0 1

RnD Industry Capital Cost Perc Reduction[agriculture] Real 0 1

RnD Industry Capital Cost Perc Reduction[other industries] Real 0 1

RnD Transportation Capital Cost Perc Reduction[battery electric vehicle] Real 0 1

RnD Transportation Capital Cost Perc Reduction[natural gas vehicle] Real 0 1

RnD Transportation Capital Cost Perc Reduction[gasoline vehicle] Real 0 1

RnD Transportation Capital Cost Perc Reduction[diesel vehicle] Real 0 1

RnD Transportation Capital Cost Perc Reduction[plugin hybrid vehicle] Real 0 1

RnD Transportation Capital Cost Perc Reduction[nonroad vehicle] Real 0 1

RnD Building Fuel Use Perc Reduction[heating] Real 0 1

RnD Building Fuel Use Perc Reduction[cooling and ventilation] Real 0 1

RnD Building Fuel Use Perc Reduction[lighting] Real 0 1

RnD Building Fuel Use Perc Reduction[appliances] Real 0 1

RnD Building Fuel Use Perc Reduction[other component] Real 0 1

RnD CCS Fuel Use Perc Reduction Real 0 1

RnD Electricity Fuel Use Perc Reduction[hard coal es] Real 0 1
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Table 1 continued from previous page

Parameter Name Parameter Type Minimum Maximum

RnD Electricity Fuel Use Perc Reduction[natural gas nonpeaker es] Real 0 1

RnD Electricity Fuel Use Perc Reduction[nuclear es] Real 0 1

RnD Electricity Fuel Use Perc Reduction[biomass es] Real 0 1

RnD Electricity Fuel Use Perc Reduction[natural gas peaker es] Real 0 1

RnD Electricity Fuel Use Perc Reduction[lignite es] Real 0 1

RnD Industry Fuel Use Perc Reduction[cement and other carbonates] Real 0 1

RnD Industry Fuel Use Perc Reduction[natural gas and petroleum systems] Real 0 1

RnD Industry Fuel Use Perc Reduction[iron and steel] Real 0 1

RnD Industry Fuel Use Perc Reduction[chemicals] Real 0 1

RnD Industry Fuel Use Perc Reduction[mining] Real 0 1

RnD Industry Fuel Use Perc Reduction[waste management] Real 0 1

RnD Industry Fuel Use Perc Reduction[agriculture] Real 0 1

RnD Industry Fuel Use Perc Reduction[other industries] Real 0 1

RnD Transportation Fuel Use Perc Reduction[battery electric vehicle] Real 0 1

RnD Transportation Fuel Use Perc Reduction[natural gas vehicle] Real 0 1

RnD Transportation Fuel Use Perc Reduction[gasoline vehicle] Real 0 1

RnD Transportation Fuel Use Perc Reduction[diesel vehicle] Real 0 1

RnD Transportation Fuel Use Perc Reduction[plugin hybrid vehicle] Real 0 1

RnD Transportation Fuel Use Perc Reduction[nonroad vehicle] Real 0 1
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A.3. Global sensitivity analysis results

Table 2: Sensitivities for Output Cumulative Total CO2e Emissions

ST ST_conf S1 S1_conf

Carbon Tax[industry sector] 0.934978 0.063026 0.936931 0.071889

Table 3: Sensitivities for Output Total CO2e Emissions

ST ST_conf S1 S1_conf

Carbon Tax[industry sector] 0.898166 0.069218 0.901834 0.070047

Table 4: Sensitivities for Output Change in Government Cash Flow

ST ST_conf S1 S1_conf

Additional EV Subsidy Percentage[passenger,LDVs] 0.141389 0.014700 0.116542 0.030473

Additional Fuel Tax Rate by Fuel[electricity] 0.081676 0.007543 0.070674 0.024962

Carbon Tax[industry sector] 0.449829 0.042525 0.435744 0.058893

Carbon Tax[transportation sector] 0.154214 0.013746 0.157570 0.033529
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Table 5: Sensitivities for Output Change in Industry Cash Flow

ST ST_conf S1 S1_conf

Carbon Tax[industry sector] 0.279880 0.028881 0.214095 0.053106

Percentage Improvement in Eqpt Efficiency Stand... 0.057861 0.006800 0.069925 0.020066

Percentage Increase in Transmission Capacity vs... 0.218258 0.022310 0.197090 0.044996

RnD Building Capital Cost Perc Reduction[envelope] 0.062850 0.006362 0.068474 0.022607

RnD Industry Fuel Use Perc Reduction[other indu... 0.096949 0.009030 0.090771 0.028404

Table 6: Sensitivities for Output Change in Consumer Cash Flow

ST ST_conf S1 S1_conf

Additional EV Subsidy Percentage[passenger,LDVs] 0.084268 0.008790 0.069945 0.023158

Carbon Tax[industry sector] 0.161916 0.016048 0.165134 0.032964

Percentage Increase in Transmission Capacity vs... 0.051498 0.004312 0.049574 0.020988

RnD Building Capital Cost Perc Reduction[envelope] 0.374742 0.033647 0.369200 0.047268

RnD Transportation Capital Cost Perc Reduction[... 0.110573 0.011305 0.100347 0.026518

RnD Transportation Capital Cost Perc Reduction[... 0.085891 0.008685 0.078691 0.027014

Table 7: Sensitivities for Output Total Change in Outlays with Revenue Neutral Carbon Tax

ST ST_conf S1 S1_conf

Percentage Increase in Transmission Capacity vs... 0.464429 0.039408 0.453963 0.053832

RnD Building Capital Cost Perc Reduction[envelope] 0.217331 0.020881 0.218640 0.037939

RnD Transportation Capital Cost Perc Reduction[... 0.085596 0.008889 0.081395 0.025458

RnD Transportation Capital Cost Perc Reduction[... 0.051707 0.006492 0.044520 0.018857

Table 8: Sensitivities for Output Total Change in Outlays

ST ST_conf S1 S1_conf

Carbon Tax[industry sector] 0.134882 0.015800 0.124347 0.033574

Percentage Increase in Transmission Capacity vs... 0.386946 0.032629 0.379610 0.052061

RnD Building Capital Cost Perc Reduction[envelope] 0.184111 0.015003 0.185384 0.035961

RnD Transportation Capital Cost Perc Reduction[... 0.074677 0.007174 0.068285 0.025527
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Table 9: Sensitivities for Output Human Lives Saved from Reduced Particulate Pollution

ST ST_conf S1 S1_conf

Annual Additional Capacity Retired due to Early... 0.065847 0.010086 0.041678 0.022001

Carbon Tax[industry sector] 0.201997 0.021969 0.196913 0.036587

RnD Electricity Fuel Use Perc Reduction[biomass... 0.108212 0.013140 0.008696 0.027412

Subsidy for Elec Production by Fuel[biomass es] 0.511329 0.057114 0.396891 0.047434

Table 10: Sensitivities for Output Social Benefits from Emissions Reduction

ST ST_conf S1 S1_conf

Carbon Tax[industry sector] 0.668757 0.048975 0.67325 0.069129

Subsidy for Elec Production by Fuel[biomass es] 0.154741 0.016519 0.11550 0.030749
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