Mohammad Miri, Muhammad Awais, Jacob Monroe, Kanwarpreet Singh Toor, Joel Grieco, Madeleine McPherson

March 22, 2020

Remote

An open-access integrated platform for visualizing Canadian's transition to a lowcarbon energy system

Background

Canada's commitment to the Paris agreement

- Modeling platforms to give insights to policies
- Have various output data
- Presenting insights in a coherent way
- Visualization options
 - Plotting scripts
 - Proprietary visualization formats
 - Visualization dashboards

Visualization platforms

- Visualization platforms:
 - IIASA's Scenario explorer

Visualization platforms

- Visualization platforms:
 - NREL's MAGMA and KALEIDOSCOPE

Visualization platforms

- Visualization platforms:
 - IIASA's Scenario explorer
 - NREL's MAGMA and KALEIDOSCOPE
- Limitations:
 - Mainly involve the IAMs
 - Model specific
 - Sectoral and high-resolution models are not still communicated to the stakeholders efficiently

Objectives

- Develops a process flow to convert the results of the models into a standard data format
- Develops a set of plotting functions that use the standardized results to create figures with interactive widgets that allow for quick multiplatform comparisons
- Accommodating a standardized but flexible format for reporting model outputs
- Publishes the code in an open, accessible, and transparent manner, complete with appropriate documentation.

Adapting standard data templates

IAMC Standard Data Template

Model	Scenario	Region	Variable	Unit	2025	2030	2035	2040
MESSAGEix_	baseline	Canada Can	in renewable biomass land_use_biomass M1	Gwa	120.837941	130.907769	140.977598	151.047426
MESSAGEix_	baseline	Canada Can	in renewable hydro hydro_hc M1	Gwa	0	0	0	0
MESSAGEix_	baseline	Canada Can	in renewable hydro hydro_lc M1	Gwa	422.895829	422.895829	422.895829	422.895827
MESSAGEix_	baseline	Canada Can	in renewable solar_csp csp_sm1_ppl M1	Gwa	0	0	0	0
MESSAGEix_	baseline	Canada Can	in renewable solar_csp csp_sm3_ppl M1	Gwa	0	0	0	0
MESSAGEix_	baseline	Canada Can	in renewable solar_pv solar_pv_ppl M1	Gwa	2.8951755	2.8951755	4.27351384	8.92562522
MESSAGEix_	baseline	Canada Can	in renewable solar_th solar_rc M1	Gwa	16.6429236	37.4560259	78.0134177	107.725266
MESSAGEix_	baseline	Canada Can	in renewable wind_offshore wind_ppf M1	Gwa	0	0	0	0
MESSAGEix_	baseline	Canada Can	in renewable wind_onshore wind_ppl M1	Gwa	38.6989644	38.2878891	36.3581487	25.1503595

Hourly time-series template

1	Hour	Biomass	Coal	NG	Fuel Oil	Hydro	Imported	Wind	Demand
2	1/1/2012 0:00	37.89	431.2	97.5	113.5	158.9878	696.9894	37.932786	1574
3	1/1/2012 1:00	33.18	323.4	106.52777	0	0	1113.333	61.559197	1638
4	1/1/2012 2:00	28.47	215.6	69.02777	0	0	1085.299	81.603261	1480
5	1/1/2012 3:00	33.18	135.692284	106.52777	0	0	1074.342	54.257786	1404
6	1/1/2012 4:00	37.89	94.681465	144.02777	0	0	1134.078	35.322847	1446
7	1/1/2012 5:00	42.28	164.7819746	145.4301984	0	0	1085.521	47.986943	1486
8	1/1/2012 6:00	46.99	272.5819746	150	0	0	979.3956	63.032448	1512

Models – IAMC data template

Integrated assessment models

- Multi-sector and multi-vector frameworks
- Assessing the costs and benefits of climate change and mitigation policies
- Answer ambitious global warming goals at least possible costs
- Case: Message-ix Canada

- Capacity expansion models
- Electricity system long-term planning model
- Investigating the least possible cost option
- Address and assess impact of polies and their relevant scenarios on the electricity system
- ReEDS, IESD5, and SWITCH
- Case: COPPER

Models – Hourly time-series data template

Electricity system operational models Transportation models Building energy models

- Electricity systems operation in a short span and in presence of network constraints and technical requirements
- To find the least possible cost that balances demand and supply
- Answer questions on a given generation fleet's adequacy and reliability
- Case: SILVER
- Simulate and predicts the transportation load in various energy sectors
- Electrification of the transportations system
- Contribution to Canada's carbon mitigation
- Case: SESIT's transportation model based on TASHA
- Simulate energy demands with given physical characteristics
- Energy efficiency and demand response potential
- Contribution to Canada's carbon mitigation
- Case: SESIT's building model

Software Development

	GETTING STARTE
/	
	Home
	Getting Started
	User Guide
	Gallery
	Reference Gallery
	Developer Guide
	API
	Comparisons
	Releases
	Road Map
	FAQ
	Github source

A high-level app and dashboarding solution for Python

- Open-source package
- Interactive web-apps
- Detailed documentations & tutorials
- Seamless integration of widely used plotting libraries such as matplolib & Bokeh

Acessability, re-usability & transparency

- The project code is made accessible at https://gitlab.com/McPherson/visualizations
- Uses open-source libraries
- Invites contributors to build their own case studies for visualizing energy system model results.
- The detailed report of the project will be publicly available at https://emi-ime.ca/

README.md An open-access integrated visualization platform for the Canadian energy system transition Overview The repository contains a visualization toolkit to report results from five energy system models developed by Sustainable Energy Systems Group - SESIT team, University of Victoria 1. MESSAGEix-Canada - Integrated Assessment Model for Canada built on MESSAGEix 2. COPPER (Canadian Opportunities for Planning and Production of Electricity Resources) - Capacity expansion model 3. SILVER - Electricity system operation model 4. SESIT's transportation modelling too 5. SESIT's buildings modelling tool Usage Two standard data templates have been used to report results from the models. The details can be seen in the documentation. The platform is developed using Panel Python package Contributing We welcome the community to contribute to the project. For any queries or questions, we prefer to use GitLab issues License Copyright 2021, SESIT and the developer team The platform is licensed under the Apache License, Version 2.0 (the "License"): see LICENSE Madeleine McPherson > visualizations > Repository visualizations / LICENSE master Add LICENSE Muhammad Awais authored 3 days ago This project is licensed under the Apache License 2.0. Learn more E LICENSE 🔓 11.1 KB Apache License Version 2.0, January 2004 http://www.apache.org/licenses/

Limitations

- Only integrates selected models and their examples
- Limited plotting options
- The results from models needs post-processing
- Basic undertsanding of python to visualize results

Future Work

- Flexible platform
- Include an uploading feature where use can upload a csv file to visualize the results
- Host the platform on webpage
- Build model documentation on open-source documentation pages such as read the docs.

Towards decarbonization pathways

- Capability to visualize decarbonization pathways from various models, scenarios
- Helps regional & national stakeholders for better policy analysis
- Motivates the community to develop standardized data formats for their models and integrated platform
- Pathway towards model comparison studies.
- Decision choices to energy transition for policy makers

PAN-CANADIAN FRAMEWORK

on Clean Growth and Climate Change

> Canada's Plan to Address Climate Change and Grow the Economy

