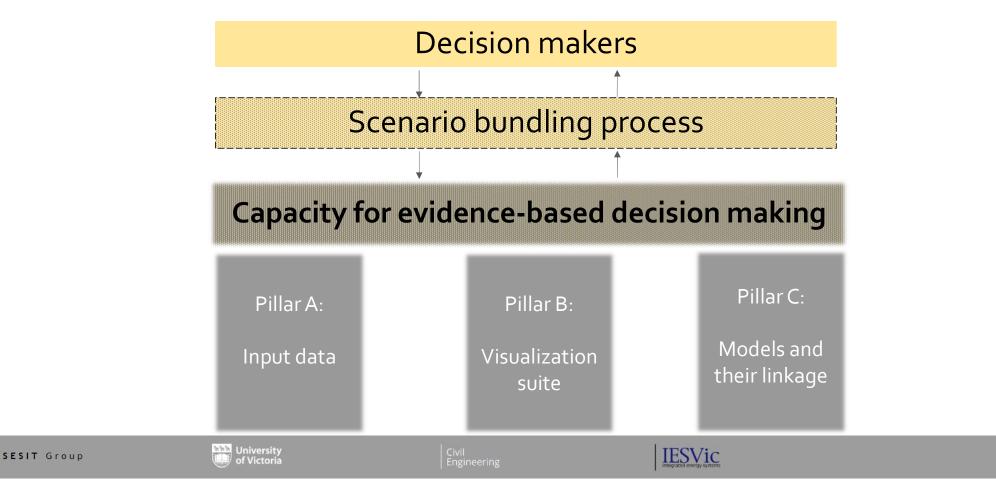
An open access dataset for modelling energy system decarbonizing pathways in Canada

Rick Hendriks, Jakub Jarasz, Tristan Cusi, Dustin Aldana, Jacob Monroe, Juha Kiviluoma *Madeleine McPherson – mmcpherson@uvic.ca

Sustainable Energy Systems Integration and Transitions (SESIT) Group Institute for Integrated Energy Systems (IESVic), University of Victoria March 22, 2021


How can we model the electrification and integration of our energy systems to explore and implement deep decarbonization pathways?

SESIT Group

University

Civil Engineering **IESVic**

SESIT modelling workflow

Presentation Outline Pillar A

CODERS –

Data needs for modelling electrification

Objective

The data challenge And its three components

SESIT modelling suite Electrification – systems and scales

CODERS database Our sources and gaps

Limitations Future work

The Challenge

- Barriers across the modelling-decision-maker interface impede deep decarbonization efforts
 - Information flow across institutional and disciplinary boundaries has been slow and opaque
- Overcoming this requires new approaches to navigating the modelling-decision-maker interface
 - Key among these is that models & input data are often unavailable or lack transparency
- When compared to the United States and Europe, the electricity data landscape in Canada is bleak [1]
 - US >> Energy Information Administration publishes standardized electricity data [2]
 Europe >> ENTSO collects and distributes real time supply and demand data for each country [3]
- In Canada electricity data are published:
 - at the provincial level
 - the suite of data published varies between provinces, and
 - the spatial and temporal formatting of published data is often inconsistent ${}_{\scriptscriptstyle [1]}$

The Challenge

The result is **substantial data gaps** that leave modellers with inadequate resources to perform in-depth and timely analyses of Canada's low-carbon energy transition, which in turn **frustrates the efforts of policy-makers** while depriving the public of complete information

SESIT Group

University

Civil Engineering

The Challenge

There are three critical but lacking components to the integration of model-based evidence into the decision-making process

- Timeliness
- Transparency
- Inclusiveness

The challenge of when - Timeliness

Data collection is often a time consuming step in the modelling process

- SESIT has spent ~ two years collecting data to model Canada's electricity system
- data pertains to generation assets, the transmission network, and load

This is non-workable for a decision maker

• with a defined and limited window to propose policy or implement programs

Our solution:

- assemble the data needed in our models in a 'standing' database is continuously updated
- overcomes one of the most time-consuming aspects of energy systems modelling

The challenge of what – Transparency

"garbage in, garbage out"

- A common trope in the modelling field, in part because it is so very true
- When presenting modelling results, many decision makers and other modellers often (rightly) ask:

but what were your inputs?

- Energy system models often leverage thousands of data points which are difficult to communicate
- A 'proper' database takes a significant step in injecting transparency into the modelling workflow:
 - open
 - shared
 - version controlled
 - standardized

SESIT Group	University of Victoria	Civil Engineering		9
-------------	---------------------------	----------------------	--	---

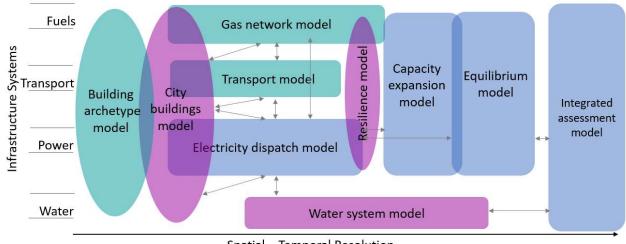
The challenge of how – Inclusiveness

To carry the weight required to impact decision making, the **modelling process** must convene a diverse range of disciplines, perspectives, and stakeholders within the modelling process, specifically in the scenario definition stages

• broad range of stakeholders

>> access to model inputs and outputs in an accessible and user-friendly format

• modelling teams


>> able to interact with, use, and potentially contribute to database

How can we model the electrification and integration of our energy systems to explore and implement deep decarbonization pathways?

Need to develop new platforms, which:

- integrate insights across spatial-temporal scales
- explore opportunities for flexibility and efficiency gains at the intersection of systems (power, transport, buildings) and vectors (electricity, fuels)
- be computationally practical and policy relevant

SESIT modelling suite

Spatial – Temporal Resolution

Each system is represented by a standalone model, which allows for:

- the full complement of system-specific operational constraints
- diverse and appropriate modelling methodologies (optimization, agent based, etc.)
- extensibility alternative models can be swapped in and out of the platform

But also requires extensive data collection

SESIT Group University of Victoria Civil Engineering	12
--	----

CODERS Data

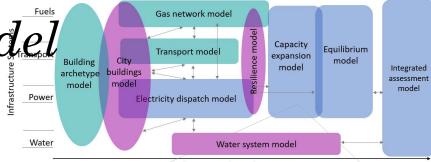
Generation / Storage Gen		Generation	n Stora		Transmission		Provincial Annual Demand		Provincial Hourly Demand	
Name		Heat Rate		Technology	Circuit ID		Historical		Historical	
Owner		Min. Capacity		Duration	Owner		Peak Capacity		Energy	
Location		Max Capacity		Associated	Region		Historical		Interprovincial	
Lat/long		Min. Up Time		Generation	Current		Annual Energy		Transfers	
Region		Min. Down Time		Cost	Length		Forecasted		International	
Substation		Ramp Rates		Outage Rates	Voltage		Peak Capacity		Transfers	
Start Year		Must Run		O&M Costs	Reactance		Forecasted		International	
End Year		Outage Rates		Hydro	Rating		Annual Energy		Prices	
Туре		Start Up Cost		Development	Capacity		Before DSM		System	
Capacity		Shut Down Cost		Potential	Start Node		After DSM		Reserve Reqs.	
Energy		O&M Costs		Reservoirs	End Node		Imports/Exports		System Losses	
(Obtained Ca				Under development		Need			
SESIT Group		University of Victoria		Civil Engin			ESVic spated energy systems		13	

Capacity expansion model

What infrastructure should we build and where?

Optimize electricity system development

Consider expansion of:


generation, transmission, storage

Consider inputs including:

technical, economic, environmental, policy

Model resolution:

Canada-wide (inter-provincial transmission) Static: hourly Dynamic: specified days/segments

Spatial – Temporal Resolution

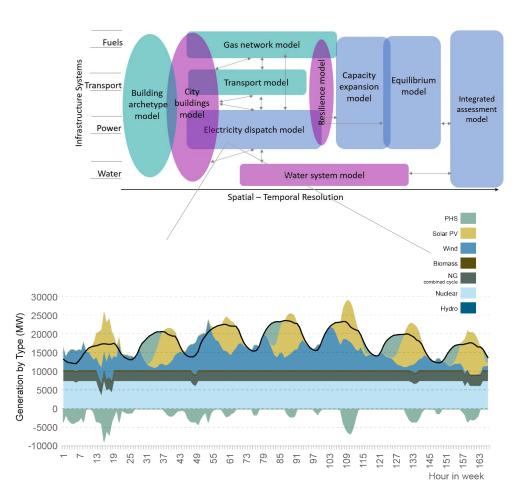
SESIT Group

University of Victoria

IESVic

Capacity expansion model

	Load Transmission			nission	Generation					Pol	icy	Other		
Hourly demand – city scale resolution	Annual forecasted growth – each province or city	Hourly demand – import and export to the US	Existing transmission – provincial system (GIS) maps	Future transmission – projects under construction	Existing generation – unit design and operations	Existing generation – retirement/redevelopment schedules	Future generation – investment cost by province	Future generation – projects under construction	Future generation – developable locations map	Emissions reduction – targets and policies by province	Emissions reduction – policies in review by province	Fuel type prices – by province	Natural gas – supply limitations by province	Natural gas – supply curves by province
Obtained		Ν	Not available – calculated			Under development		Need						
SESIT Group University of Victoria			sity oria		Civil Engine							15		


Electricity dispatch model

Production cost model

- Unit commitment
- Economic dispatch
- Optimal power flow
- Mixed-integer linear formulation
- Objective: determine the least-cost dispatch of generation assets on the electricity system

University of Victoria

SESIT Group

IESVic

Electricity dispatch model

	Gen	eration and St	orage		Transmission						
	Type Capacity Location Lat/Long	Ramping Up/down Outages Costs	Hydro – Storage Ramping Inflows	Networks – Connections Substations Locations	Interprovincial – Transfers	Lines – Capacity Reactance	Lines – Length	Lines - Voltage	Provincial Hourly Demand	Substation Hourly Demand	
BC											
AB											
SK											
MB											
ON											
QB											
NB											
PE											
NS											
NL											
		Obtained		Not available – calculated	Unde develop			Need			
SESI	T Group		University of Victoria	Ci Er	vil ngineering	I Inte	ESVic grated energy systems			17	

Transport sector model

Multi-layered network model

- road, electricity, and fuel networks

Energy vectors

- electricity, hydrogen, methane, gas

Transport modes

- vehicle, transit, cycling, walking

Node types

- residential, commercial or industrial

Travel behaviour

- journey type, departure node, departure time, arrival node, arrival time

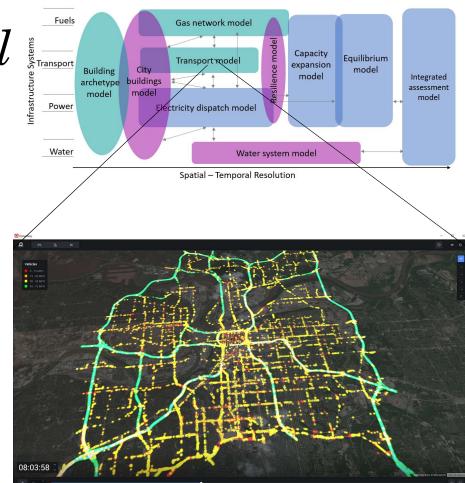


Image source: https://www.inrosoftware.com/en/products/dynameq/

Civil Engineering IESVic

Transport sector model

	Transportati	ion Network	Vehicl	e Fleet	Travel/Chargi	ng Behaviour	Electricity Grid	Charging Infrastructure
	Zone to Zone auto travel times/distances	Zone to Zone transit travel times/distances	Future electric vehicle stock predictions	Household vehicle ownership	Electric Vehicle charging behaviour	Individual travel behaviour	Mapping – travel zone to substation	Charging availability
Aggregate					N/A do not need	N/A do not need		
Disaggregate	N/A do not need	N/A do not need	N/A do not need	N/A do not need				
	Obtained		Not available – calculated		Under elopment	Nee	d	
SESIT Group		University of Victoria		Ivil Ingineering		Vic.		19

Building model

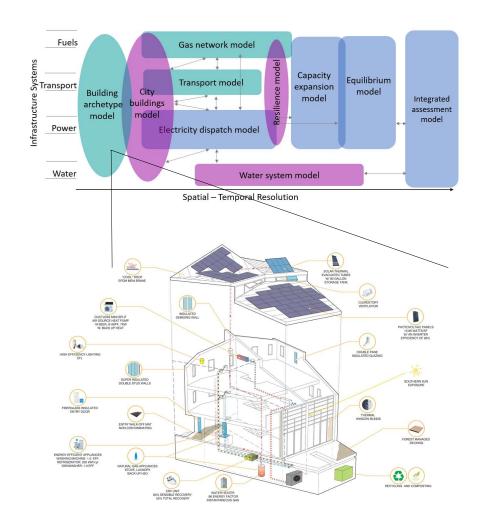
Туре

- residential, commercial, or industrial

Energy consumption by vector

- electricity, NG, and hydrogen

Load type


SESIT Group

- refrigeration, heating, cooling, etc.

'Smart attributes'

- on-site generation, storage, priceresponsive demand

> University of Victoria

IESVic

Building model

	Meter Data			Building Characteristics						-	onal teristics	Population Characteristics	
	Households	Commercial / Institutional	Lot Size	Wall-to- Window Ratio	Wall Insultation	Thermal envelope	Equipment	Air infiltration	Occupancy	Weather Data	GIS Features	Demography	Occupant Preferences
Building specific													
Building archetype													
Survey data													
	(Obtained			Not available – calculated		Under development			Need			
SESIT Group)		University of Victoria			Civil Engineering			IESVic			21	

Limitations

- The data itself
 - identify the need for additional input data (particularly from other sectors)
- Access privileges and rules as defined by the host (Compute Canada)
 - researchers must have status confirmed (or sponsored) by a faculty member
 - currently limits the pool of users to those with a connection to academia
 - future work: migrate to a broadly-accessible hosting platform
- Direct access via a website and GUI
 - front end >> what users interact with
 - back end >> retrieve from database, process, and send to the front end

Future Vision – a national modelling platform

- A foundation that can be extended into a broader series of activities
 - integrated into a national modelling platform
 - convene and leverage Canadian modelling capacity
 - support decision-makers to charting and implementing decarbonization pathways
- Other activities include
 - a visualization suite (Pillar 2 subsequent EMI presentation)
 - a repository of open-access models (Pillar 3 subsequent EMI presentation), and
 - an ongoing series of modelling forums that convene modelling teams

Thank you

For more information, please contact: mmcpherson@uvic.ca