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Abstract 

Future energy scenarios for the electricity sector must include reliable emission 

factors at the very time the energy is consumed to account for changes in load and 

generation. This report compares the hourly marginal emission factors (MEFs)   

estimated for the province of Alberta for the year 2018 using two different 

approaches: a multiple linear regression model (MLR) and the Canadian Energy 

Regulator (CER) Energy Futures model. The models are evaluated by comparing their 

results for the fraction of the time that different generator types are marginal on an 

annual basis to data provided by the Alberta Electric System Operator (AESO). Results 

from the CER model are much closer to those of the AESO than those of the simpler 

MLR model, which significantly underestimates the fraction of time that coal 

generators are marginal, and significantly overestimates the fraction of time that gas 

and hydroelectric generators are marginal. In line with this, the MEF predictions from 

the two models are quite different:  the annual average MEF predicted by the MLR 

model is 693 kg of CO2/MWh whereas the CER model estimates this value at 

842 kg of CO2/MWh. Average MEFs are computed for each model by month and hour 

of the day to examine systematic patterns that could be used for instance to schedule 

loads such as electric vehicle charging. Again, the two models give significantly 

different results: there is much less variability across months and hours with the MLR 

model as the standard deviation is of only 4 kg of CO2/MWh compared to 

126 kg of CO2/MWh for the CER model.  
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 Résumé 

Les scénarios énergétiques futurs pour le secteur de l'électricité doivent inclure des 

facteurs d'émission fiables au moment même où l'énergie est consommée pour tenir 

compte des changements dans la demande et la production. Ce rapport compare les 

facteurs d'émission marginaux (FEM) horaires estimés pour la province de l'Alberta 

pour l'année 2018 à l'aide de deux approches différentes : un modèle de régression 

linéaire multiple (MLR) et le modèle Energy Futures de la Régie de l’énergie du 

Canada (REC). Les modèles sont évalués en comparant leurs résultats pour la fraction 

du temps où les différents types de générateurs sont marginaux sur une base 

annuelle aux données fournies par l'Alberta Electric System Operator (AESO). Les 

résultats du modèle REC sont beaucoup plus proches de ceux de l'AESO que ceux du 

modèle plus simple MLR, qui sous-estime considérablement la fraction de temps 

pendant laquelle les générateurs au charbon sont marginaux, et surestime 

considérablement la fraction de temps pendant laquelle les générateurs au gaz et 

hydroélectriques sont marginaux. Dans le même ordre d'idées, les prévisions de FEM 

des deux modèles sont très différentes : le FEM moyen sur une base annuelle prévu 

par le modèle MLR est de 693 kg de CO2/MWh alors que le modèle REC estime cette 

valeur à 842 kg de CO2/MWh. Les FEMs moyens sont calculés pour chaque modèle 

par mois et par heure de la journée afin d'examiner les tendances systématiques qui 

pourraient être utilisées, par exemple, pour programmer des charges telles que la 

recharge des véhicules électriques. Encore une fois, les deux modèles donnent des 

résultats très différents : il y a beaucoup moins de variabilité parmi les données par 

mois et par heure de la journée avec le modèle MLR, puisque l'écart type n'est que 

de 4 kg de CO2/MWh, contre 126 kg de CO2/MWh pour le modèle REC.  
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1. Introduction 

Developing sound policies for energy planning requires a clear science-based 

demonstration of the environmental impact that may ensue.  Electricity represents 

10% of Canada’s greenhouse gas (GHG) emissions even if more than 80% of electricity 

in Canada comes from non-GHG emitting sources [1]. Whereas baseload production 

is relatively clean overall, the imbedded carbon intensity still varies depending on 

location, time of day and day of year. Thus, future energy scenarios for the electricity 

sector must include reliable emission factors at the very time the energy is consumed 

to account for changes in load (e.g. from electric vehicle (EV) charging) and 

generation. Most of the models that can carry these studies are either proprietary or 

incomplete and the data to run the simulation or train the models are often 

unavailable to the research community. 

 

Emission factors for electricity generation in Canadian provinces are generally 

provided as annual averages. Average emission factors is one type of metric that can 

be used for strategic assessments such as climate change policy comparisons. 

However, when for example assessing the impact of specific technologies, alternative 

metrics may be considered to quantify GHG emissions. One of these metrics is 

marginal emission factors (MEFs) that provide the emissions impact resulting from 

an incremental unit of electricity demand, such as an electric vehicle.  In the last few 

years, different approaches have been developed to quantify hourly MEFs. 

Unfortunately, there have been few attempts at comparing these different 

approaches particularly in the Canadian context where the electricity market is 

segmented across provincial utilities. This project conducts a review of models to 

calculate hourly MEFs and a comparison of two approaches using a specific province 

as a case study. This report focuses on the Alberta electric grid as a case study. 
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Alberta’s electric system represents an interesting case study for a variety of reasons. 

First, data is available on the hourly electric generation of each generator from the 

Alberta Electric System Operator (AESO). Second, Alberta has an increasingly diverse 

grid containing renewables, coal, and natural gas generation which is flexible to 

various degrees (Figure 1). This creates the possibility that the MEFs and average 

emission factors (AEFs) could be significantly different. Finally, while Alberta does 

have interties with neighbouring regions, these represent a fairly small share of 

electricity generation in the province. Therefore, the comparisons across estimation 

techniques should not be especially biased by how detailed they are with respect to 

coverage of neighbouring regions. 

 

 

Figure 1:  Share of Energy Production by Generation Technology, Alberta, 2014-2019 [2] 

The objectives of this study are to: 

 

 Build a “fair” approach (including common inputs/outputs and comparison 

metrics) to compare the different MEF calculation models 
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 Identify data required to estimate reliable hourly MEFs 

 Investigate methods to fill data gaps and model gaps 

 Compare approaches (specific to the requirements – e.g. small vs big incremental 

load) for calculating hourly MEFs 

 

At first, a literature review of MEF calculation methods was performed to identify the 

approaches to pursue. This was followed by defining the modelling framework required 

for selected approaches, e.g. inputs and comparison metrics. Once the framework was 

defined, the data required for selected modelling approaches was collected. The hourly 

MEFs were then modelled, evaluated and compared using different approaches for the 

Alberta electric grid. 
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2. Literature Review 

Electricity greenhouse gas emission factors indicate how much carbon would be 

emitted or saved by changing electricity usage in terms of kg of carbon dioxide 

emissions per MWh of power usage (kg of CO2/MWh). Emissions taken into account 

are associated with power generators and transmission/distribution losses. Two 

types of greenhouse gas emission factors are commonly used for such assessment:  

 

 Average Emission Factor (AEF) which is defined as the ratio of CO2 emitted to 

electricity generated. It represents the average kg of CO2/MWh of electricity 

consumed at the point of final consumption.   

 Marginal Emission Factor (MEF) which is defined as the incremental change in 

carbon dioxide emissions as a result of an increase in demand. 

 

A variety of public and commercial assessment tools have been used to calculate 

emissions from electricity usage. They range in complexity from simple emission 

factors to multifaceted grid models with market-based dispatch of generation assets. 

Some articles provide a comprehensive comparison of various methods to give a 

general overview of the techniques available and the impact of model selection. 

Thirty-two methods and models are identified and reviewed in [3]. The methods and 

models are then classified into two distinct categories: i) empirical data and 

relationship models, including eGRID and AVERT which use historical data and are 

not necessarily adapted to predict future emissions, and ii) power system 

optimization models to address economic dispatch, unit commitment and capacity 

planning for long-term changes. 

 

Relationship models: Development of empirical data and relationship models has 

been showcased and discussed in numerous publications. In [4], the output of each 
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generator, system load and picture of the future generation mix are used to calculate 

hourly and monthly MEFs using a linear regression model. Regression techniques are 

used in [5] to compute MEFs and to determine the marginal generator type using 

changes in emission and generation. A statistical method is introduced in [6] to 

determine capacity factors for each generator type depending on the load, decide on 

the dispatch and compute the emissions, having a large penetration of EVs in mind. 

In [7], a relationship model is developed between emissions and consumption using 

a least square technique. Also, regression coefficients are calculated for individual 

regions in a state in order to compute MEFs by location in the same market zone. The 

AVERT tool [8] implements a statistical approach using emission, generation and load 

data to calculate MEFs. The methodology is based on Monte Carlo analysis and 

includes computation of the frequency of operations for fossil-fuel generators. The 

focus of the analysis in [9] is the greater Toronto and Hamilton area in Ontario where 

hourly MEFs are calculated using multiple linear regression models. Also, GHG 

emissions associated with EV charging are estimated at two penetration rates (5% 

and 30%) using five charging scenarios: home, work and shopping, night, downtown 

versus suburbs and an optimal low-emission charging scenario, matching charging 

time with the lowest available MEFs. A machine learning approach is used in [10] 

which employs support vector machine regression to estimate marginal emissions 

with load and wind data among inputs. Marginal emissions are also calculated by 

linking local marginal prices to the generation type on the margin and associating an 

emission factor to each generator type [11][12]. 

 

Power system optimization models: the use of power system optimization models is 

attested in [13] with the simulation of the entire electricity system using PROMIX, 

with different demand possibilities to evaluate the impact of demand changes. 

PLEXOS market model software is used in [14] to model the grid and to do a case 

study on the impacts of EV charging (with charging scenarios). The TIMES modelling 
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environment is employed in [15] to report the account of structural and operational 

effects in electricity systems on the calculation of MEFs in the long-run. The above 

works are followed by a unit commitment model for New York State with scenarios 

of change in electricity grid up to 2025 [16] and a model of the California electricity 

grid capable of differentiating hourly and seasonal GHG emissions by generation 

source incorporating the potential use of different types of plug-in hybrid electric 

vehicles  [17]. The Electricity Dispatch model for Greenhouse gas Emissions in 

California (EDGE-CA) is introduced in [18] where it simulates near-term electricity 

supply on an hourly basis in order to estimate emissions from marginal generation 

for vehicle and fuel demands. As a spreadsheet-based accounting tool, it determines 

the capacity and allocates generation among available power plants to meet demand 

in three regions of California, including imported power from out of state. Simulation 

of the operation of national energy systems in Denmark is showcased in [19] on an 

hourly basis using a user-friendly interface and including the electricity, heating, 

cooling, industry, and transport sectors. Finally, Integrated Planning Model (IPM) of 

the electric power sector is presented in [20] which is designed to help government 

and industry analyze a wide range of issues such as economic activities in key 

components of energy markets. The applications of IPM include capacity planning, 

environmental policy analysis and compliance planning, wholesale price forecasting 

and asset valuation. It also captures the linkages in electricity markets which leads to 

integrated analysis of the impacts of alternative regulatory policies on the power 

sector. 

 

Electric vehicles: As the usage of EVs increases, calculation of emissions related to 

these vehicles – both conception and operation – becomes a topic of interest for case 

studies. The emissions of EVs across their whole life cycle are addressed in [21] while 

the computation of the EV footprint with marginal emission factors for the USA 

electricity system is discussed in [22]. The computation and comparison take into 
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account marginal grid mix, ambient temperature, patterns of vehicle miles travelled 

and driving conditions. The method described in [23] uses short run marginal cost 

curves and a dispatch merit order strategy to compute the emissions factor and apply 

it to the EVs. Finally, studies covering the longer-term planning of EV incorporation 

include [24] where long-term effects of large penetration rate of EVs are modelled 

using MEFs determined by a dispatch algorithm. 

 

The above literature review briefly shows the vast scope of work already done or in 

progress regarding the evaluation of GHG emissions. Different models focus on 

certain elements which are often region-specific such as current energy policies, 

generation mix and power systems, EV market penetration and so on. It is important 

to have the right values regarding the emissions as understanding and quantifying 

the impact of GHG emissions is a key element for electrification studies. To do this, 

the present study provides a comparison of different models developed and used in 

Canadian institutes, as the first step in building a consensus for generating this type 

of information required for decarbonisation and electrification studies within the 

Canadian context. 
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3. Model and Methodology 

Two models were selected for the comparison and are described in the following 

sub-sections: 

 

 A multiple linear regression model 

 The Canadian Energy Regulator (CER) Energy Futures model 

 

These models were run for the year 2018 for the Alberta grid and compared based 

on their predicted average hourly marginal emission factors for each month of the 

year and hour of the day. No actual data on hourly marginal and/or average emission 

factors for the Alberta grid are available making the validation of the models 

challenging. The AESO does provide, however, the fraction of time different 

generator types are on the margin on an annual basis as well as the fraction of total 

generation provided by different generator types. These two metrics were therefore 

used as the primary means of evaluating the different models when possible, i.e. 

when the model provided outputs that allowed calculating these metrics. 

3.1. Multiple Linear Regression (MLR) Model 

The multiple linear regression model of marginal greenhouse gas emission factors is 

based on the work of [9] at the University of Toronto.  In this model, MEFs depend 

both on the total generation level G and on the change in total generation from one 

hour to the next (ΔG), as follows: 

 ∆𝐸 = (𝛽1 + 𝛽2𝐺 + 𝛽3∆𝐺)⏞            
𝑀𝐸𝐹

∆𝐺 + 𝛽0 (1) 

where ΔE is the change in total GHG emissions from one hour to the next and the 

expression in parentheses (red font) is the marginal emission factor for a given hour. 



 

2021-075 13 2021-03-19 

(This expression corresponds to MLR2 in the terminology of [9], but with the addition 

of the constant term β0.) 

  

In the same vein, this model was extended in [25] to provide the fraction of time (γk) 

that each generator type is marginal, via the following equations: 

 ∆𝐺𝑘 = (∈1,𝑘+∈2,𝑘 𝐺 +∈3,𝑘 ∆𝐺)
⏞                

𝛾𝑘

∆𝐺 +∈0,𝑘 (2) 

where k corresponds to the generator type (e.g. coal, gas, hydro, wind) and ΔGk is the 

change in generation levels for generators of type k from one hour to the next.  

 

Prior to fitting this model, the hourly generator output data were filtered to remove 

generators that could not be marginal for each hour. Only coal, gas and hydro 

generators were considered as potentially marginal based on AESO annual market 

statistics data [2]. In addition, generators were excluded from the marginal 

generation pool for a given hour when their change in generation was of opposite 

sign to the change in the total generation. After data filtering, the coefficients of the 

model (𝛽0, 𝛽1, 𝛽2, 𝛽3, ∈0,𝑘, ∈1,𝑘, ∈2,𝑘, ∈3,𝑘) were obtained by fitting the model to 

hourly AESO data for all of 2018. 

  

[25] evaluated different versions of simple linear regression, multiple linear 

regression and artificial neural network models using data from Ontario (IESO) and 

Alberta (AESO), and found that the multiple linear regression model in equation (1) 

performed well overall in terms of predicting changes in emissions from one hour to 

the next [25]. However, one limitation of this model is that it is trained on historical 

data. As such, it remains valid only to the extent that the generation fleet remains 

sufficiently similar to what it was during the period used for model training.   
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3.2. CER Model 

The Canada Energy Regulator (CER) approach uses components of its Energy Futures 

Modeling System (EFMS) to analyze marginal generation sources. The EFMS is a 

collection of models and modules that are soft and/or hard linked in order to produce 

CER Energy Futures scenarios. For this analysis, we focus on the electricity sector, 

where the EFMS utilizes Python for Power System Analysis (PyPSA), an open-source 

power flow optimization model, to complement the electricity analysis in the EFMS’s 

core energy system model, ENERGY2020. An overview of the EFMS and integration 

with PyPSA is found in [26]. 

 

PyPSA is included in the EFMS to add additional granularity, particularly greater 

temporal resolution, for electricity modelling. This section provides a brief overview 

of PyPSA. Full documentation of PyPSA is available from its website. The objective 

function for the optimization is comprised of total capital and generating costs for 

each network component and generator. Several constraints are added to 

generators. Minimum and maximum generation constraints for each hour along with 

hour-to-hour ramping constraints are added for certain technology groups. For 

example, the maximum hourly generation for wind and solar is determined by the 

site level historical wind speed and solar irradiance data. Similarly, minimum and 

maximum generating constraints on hydroelectricity are incorporated, based on 

seasonal availability. Ramping constraints are also imposed based on technology 

operating characteristics. For example, coal plants and nuclear reactors cannot 

rapidly ramp their generation up or down, while technologies like simple cycle gas 

turbines can quickly change generation. These differences are reflected in the 

ramping constraints. On the demand side, future hourly demand is simulated using a 

combination of historical hourly load factors and ENERGY2020’s forecasted peak 

demand. The historical load factors are scaled up using the projected peak loads, 
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which gives an hourly demand profile for the given year. All of the above discussed 

constraints and data are then fed into PyPSA to create the optimal generation profile 

for each province and forecast year. 

 

The use of PyPSA is guided by the overall goal of the EFMS, which is to produce 

long-term scenarios. In the EFMS, PyPSA provides important insights on how the 

electricity system could operate at an hourly level, which is important for assessing 

factors such as variable renewable generation and battery storage. While PyPSA can 

be utilized to include more granular data (such as generators by unit or facility, or 

sub-hour time intervals), the focus is on broad technology groupings (wind, solar, 

combined cycle natural gas, simple cycle natural gas, etc.) and an hourly time interval. 

Because PyPSA integrates with broader energy system modelling, this level of detail 

provides a trade-off between realism and tractability for long-term scenario analysis.  

 

For each time slice, the model outputs generation and a location-specific marginal 

price. The marginal fuel type is inferred based on the marginal price for each time 

slice. Emissions for each hour are computed by multiplying each fuel type’s 

generation by the corresponding emission factor assumption for that fuel and level 

of output. The average emissions factor is computed by dividing the sum of emissions 

for each hour by the sum of generation. The marginal emissions factor is equal to the 

emissions output of the marginal fuel type divided by its generation.  
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4. Data Sources  

The models discussed in Section 3 use different sets of input data which include both 

common and model-specific items. Sometimes, the input data are processed before 

being used in a model. Also, it is possible that some input data are used to further 

process the output of a certain model in order to evaluate a common metric. Table 1 

summarizes the input data and associated sources.  

 

This analysis focuses on the year 2018, meaning that most of the input data used by 

the models are recorded in 2018 except some technical information which may not 

need to be updated every year such as heat rate curves or operational information 

of different types of generators. 

 

Note that both models consider Alberta as one zone so information such as 

transmission constraints and costs (intra-provincial congestion) as well as the 

generation and transmission network architecture are not required. 

Table 1:  Sources for the inputs of the different models 

Input 

Data Source 

MLR Model CER Model 

Hourly marginal electricity prices AESO[29] 

Hourly imports from all interties AESO[30]   

Type of generator AESO[30] 

Heat rate curves by type of coal/gas 
generator (all generators) 

Literature[27][28]* AESO[30]+ Literature[27][28]* 

CO2 emissions per unit fuel 
consumption 

U.S. Energy Information Administration (EIA)[31]  

British Columbia average annual 
emission factor National Inventory Report 

(NIR)[32]  
 

Saskatchewan average annual 
emission factor 

Montana intertie average annual 
emission factor 

EIA[33]  
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Input 

Data Source 

MLR Model CER Model 

Hourly output of all generators in 
Alberta 

AESO[30]  

Hourly load*   AESO[30] 

Operational information of each type 
of generator (e.g. ramp, start-up 

cost)** 
 Literature[34] 

Renewable energy availability 
forecast 

 AESO[30] 

* The heat rate curves for coal, natural gas combined cycle, and natural gas steam generators were first estimated 
by taking their respective curves in [27] and scaling such that their full-load heat rate values matched those provided 
by the EIA [28]. They were then modelled by fitting a quadratic to the resulting curves (the quadratic providing a 
best fit). The search for a heat-rate curve for natural gas simple-cycle generators was inconclusive; thus, a flat 
(constant) heat rate was used, corresponding to its full-load heat rate in [28]. 
** Hourly constraints for ramp limits and minimum/maximum output are expressed as percentages of the total 
capacity for the entire generation fleet, based on AESO's unit generation data. There are no constraints for shut 
down and start-up costs or ramps. 
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5. Results and Analysis 

In this section, the results of the two models are discussed and compared with the 

data from AESO. The AESO provides the fraction of time that each generator type is 

marginal on an annual basis [2]. This information can be used to validate how well 

both models capture marginal generation. As shown in Table 2, the results of the CER 

model are much closer to the data from AESO than those of the MLR model, which 

significantly underestimates the fraction of time that coal is on the margin and 

overestimates the fraction of time that hydroelectric and gas generators are on the 

margin.  

 

Regarding the fraction of total generation provided by each generator type, as shown 

in Table 3, CER model calculations are again very close to those reported by AESO. 

Note that the CER model was run without taking interties into account, so it naturally   

neglects their contribution. There are no results reported for the MLR model since it 

considers the generation information as a model input. 

 

Figure 2 shows a heat map of average MEFs by hour and month for the two models 

(in kg of CO2/MWh) and Table 4 summarizes key statistics of these data. The average 

MEF heat map may serve as a guide to decide when the best time is to add a marginal 

load, e.g. EV charging load, to the system so that the emissions are the least. As can 

be seen from Figure 2, the MEFs from the MLR model have very low variability 

compared to those of the CER model, with MEFs from the MLR model being relatively 

insensitive to month and time of day. The CER model shows roughly the same hourly 

pattern across all months, with the lowest MEFs occurring in the morning (roughly 

5:00-8:00) and afternoon (roughly 12:00-15:00). Meanwhile, the MLR model predicts 

lower emissions in the late evening to early morning, but the pattern is much less 

pronounced than for the CER model so not as apparent in the heat map. Given the 
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better agreement between the CER model and the available AESO data, it seems 

plausible that its hourly MEF pattern is closer to the reality, but this cannot be directly 

validated at this stage.  

Table 2: Fraction of time different generator types are on the margin 

Generator Type MLR Model CER Model AESO[2] 

Coal 57% 73% 79% 

Gas 35% 27% 18% 

Hydroelectric 9% 0% 1% 

Wind 0% 0% 0% 

Other 0% 0% 1% 

 

Table 3: Fraction of total generation provided by different generator types 

Generator Type MLR Model CER Model AESO[2] 

Coal  47% 45% 

Gas  43% 40% 

Hydroelectric  3% 3% 

Wind  7% 6% 

Imports   5% 

Other  0% 1% 

 

Table 4: Statistical properties of the distribution of MEFs (kg of CO2/MWh) in Figure 2 

Parameter MLR Model CER Model 

Minimum 681 482 

Maximum 701 999 

Average 693 842 

Median 693 886 

Standard Deviation 4 126 
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Figure 2: Average MEFs by hour and month for the two models (kg of CO2/MWh) 

Figure 3 shows heat maps of AEFs by hour and month from the CER model, and 

derived directly from AESO generator output data using the heat rate curves and CO2 

content assumptions from Table 1. In both cases, the main variations occur across 

months rather than across hours, with lowest AEFs during the early summer (May 

and June) and highest AEFs during shoulder months (March and September). The 

variability of the AEF values in both cases is comparable and much lower than for the 

CER MEFs, as shown in Table 5. 

1 2 3 4 5 6 7 8 9 10 11 12 Average

1 690 688 688 684 681 683 686 687 687 689 690 692 687

2 690 689 688 685 683 684 688 688 687 690 691 692 688

3 690 689 689 685 683 684 688 688 688 690 691 693 688

4 691 690 689 686 683 684 687 689 688 690 692 694 689

5 692 692 691 687 684 685 689 689 689 691 693 695 690

6 694 694 693 689 685 686 689 692 691 693 695 696 691

7 698 697 696 692 688 689 691 693 695 695 697 698 694

8 699 700 697 693 692 692 694 694 695 698 698 700 696

9 699 696 695 692 692 693 696 696 695 695 697 700 696

10 696 696 695 691 692 693 696 697 695 695 697 699 695

11 696 696 694 692 692 693 696 696 695 696 696 699 695

12 696 695 694 691 692 693 695 696 694 695 696 698 695

13 695 695 693 691 692 692 696 696 693 694 694 698 694

14 695 694 692 691 692 692 695 696 694 694 696 697 694

15 695 694 692 690 691 692 695 696 694 693 696 698 694

16 696 695 693 690 691 692 695 696 694 694 697 698 694

17 699 697 694 691 692 693 696 696 694 695 697 701 695

18 701 698 694 691 691 692 694 695 695 695 698 701 695

19 697 699 694 688 689 689 693 694 693 695 696 698 694

20 695 696 695 689 689 690 693 694 694 695 697 698 694

21 695 694 695 691 688 689 691 694 695 693 696 698 693

22 694 693 692 691 688 688 692 694 691 692 693 697 692

23 691 690 689 686 686 688 692 691 688 690 692 695 690

24 690 689 688 684 682 685 689 688 687 690 691 694 688

695 694 693 689 688 689 692 693 692 693 695 697 693

Annual average

1 2 3 4 5 6 7 8 9 10 11 12 Average

1 812 784 875 938 980 908 887 871 915 972 856 790 882

2 902 760 869 959 971 941 880 923 962 970 912 836 907

3 913 772 917 947 952 945 865 926 961 914 915 939 914

4 896 796 806 857 911 902 960 862 765 720 887 908 856

5 706 699 710 734 806 886 856 694 616 638 744 762 738

6 560 637 623 701 754 812 739 621 655 658 638 662 672

7 579 667 771 796 824 778 742 667 797 876 640 737 740

8 716 800 939 875 866 887 841 784 918 957 816 826 852

9 886 932 930 915 867 862 999 883 981 939 909 922 919

10 888 947 809 897 874 885 980 941 942 848 930 980 910

11 758 948 734 779 827 825 941 822 641 669 831 867 803

12 611 783 623 659 652 564 649 726 621 593 693 734 659

13 557 641 574 655 580 508 572 727 646 601 616 679 613

14 530 643 691 790 646 495 482 633 782 754 554 646 637

15 637 730 885 903 799 651 610 652 959 944 677 683 761

16 819 847 918 951 919 889 794 780 964 954 932 871 887

17 925 834 917 973 931 944 915 929 974 960 967 937 934

18 937 822 917 973 954 961 954 957 953 972 954 930 940

19 947 821 907 972 978 974 964 968 961 960 965 949 947

20 930 809 918 973 978 974 942 967 954 953 954 949 942

21 920 813 929 973 978 955 928 949 962 954 965 949 940

22 920 838 903 974 977 954 966 955 973 974 965 942 945

23 883 801 940 961 978 942 965 967 972 971 851 814 920

24 761 782 889 941 978 928 921 921 948 971 802 772 884

791 788 833 879 874 849 848 839 868 863 832 837 842

Annual average

Month

H
o

u
r

Average

MLR Model

Month

H
o

u
r

Average

CER Model
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Figure 3: AEFs by hour and month estimated from AESO data and the CER model (kg of CO2/MWh) 

Table 5: Statistical properties of the distribution of AEFs (kg of CO2/MWh) in Figure 3 

Parameter MLR Model CER Model 

Minimum 587 556 

Maximum 706 668 

Average 653 617 

Median 658 620 

Standard Deviation 26 25 

 

1 2 3 4 5 6 7 8 9 10 11 12 Average

1 649 633 676 632 591 609 663 671 695 681 679 671 654

2 646 627 672 629 588 604 667 670 698 684 678 669 653

3 645 624 671 628 589 600 670 672 703 684 675 671 653

4 643 624 671 627 591 597 671 673 706 685 676 672 653

5 647 624 673 627 590 597 671 672 705 685 679 672 654

6 650 624 673 628 588 601 669 673 705 681 675 672 654

7 660 626 681 635 587 608 670 676 704 675 672 665 655

8 659 629 682 631 588 607 660 665 692 660 658 655 649

9 668 636 683 640 600 619 667 670 688 658 662 656 654

10 669 640 683 638 604 624 672 678 689 656 663 658 656

11 663 647 682 644 602 628 668 676 689 662 665 658 657

12 661 646 679 648 608 631 664 673 686 663 666 659 657

13 661 650 681 652 615 629 665 673 683 659 665 659 658

14 657 649 678 653 618 627 661 670 679 658 666 659 656

15 654 651 675 650 618 623 660 666 679 653 667 659 655

16 652 649 674 649 617 621 655 663 679 651 668 656 653

17 650 648 671 647 618 620 656 664 677 651 660 651 651

18 652 647 670 646 618 615 652 661 680 652 656 652 650

19 654 651 669 643 618 608 653 663 682 652 659 650 650

20 652 650 669 640 615 607 648 663 684 652 664 649 650

21 654 647 673 640 611 609 644 665 684 649 666 650 649

22 656 647 677 643 603 610 646 666 691 660 669 653 652

23 650 639 674 637 596 606 652 664 691 664 672 654 650

24 650 636 676 636 600 614 665 668 699 674 681 661 655

654 639 675 639 603 613 661 669 690 665 668 660 653

Annual average

1 2 3 4 5 6 7 8 9 10 11 12 Average

1 638 664 651 620 604 597 621 625 627 620 634 638 628

2 637 664 650 617 601 590 612 621 628 620 632 634 626

3 634 665 654 618 597 587 605 618 628 617 629 629 623

4 631 663 656 619 590 585 602 614 629 617 624 625 621

5 626 661 652 610 580 576 601 609 622 610 616 621 615

6 617 655 646 601 576 574 600 603 615 602 607 613 609

7 606 647 636 590 565 566 594 593 605 592 601 610 600

8 597 642 630 582 561 558 585 582 597 587 593 606 593

9 592 636 626 578 559 556 583 575 595 584 583 599 589

10 590 632 626 580 561 556 582 576 598 587 579 597 589

11 593 629 632 585 563 562 585 579 607 596 582 599 593

12 605 631 639 593 569 571 592 586 619 606 590 605 601

13 617 636 646 600 577 581 603 597 625 612 599 614 609

14 624 638 652 604 581 587 608 599 624 611 604 618 612

15 627 642 658 614 597 601 622 613 629 619 608 618 621

16 639 651 660 618 599 606 631 627 634 623 617 625 627

17 642 654 661 622 597 612 637 632 637 628 620 628 631

18 641 659 662 626 601 612 639 636 636 629 624 626 633

19 642 662 663 627 605 612 641 634 632 626 625 628 633

20 641 667 662 628 606 609 638 633 630 623 626 628 633

21 640 667 660 625 607 604 636 631 630 618 627 627 631

22 636 667 657 625 607 603 633 630 631 616 629 627 630

23 635 668 656 626 608 602 632 630 630 619 630 628 630

24 636 667 654 624 608 600 630 626 632 620 633 631 630

624 653 649 610 588 588 613 611 623 612 613 620 617

Annual average

Month

H
o

u
r

Average

Derived from AESO

Month

H
o

u
r

Average

CER Model
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6. Discussion 

In this analysis, two approaches have been used to estimate marginal emission 

factors for Alberta in 2018. Each can provide useful policy-applicable insights on the 

dynamics of marginal emission factors in a given province for its grid at a given point 

in time. For example, if marginal emissions factors are typically lower during certain 

hours of the day, policies to encourage load shifting to those hours could realize some 

emission reductions. 

 

With respect to future decarbonisation pathways, the MLR model differs from the 

CER model in that it is solely focusing on current/historical analysis. The CER model 

has the ability to provide outlooks for future years, and in fact, this is their most 

common use case. When similar MEF analysis is done for a future year for these 

models, it will be done by analyzing the marginal generator in that future electricity 

system, which could have significantly different characteristics compared to today in 

areas such as load, load shape, generation technology mix, or trade. In the context of 

deep decarbonisation pathway analysis, much of the attention and interest are on 

non-marginal changes, such as electrifying personal transportation or space heating, 

or decarbonising the electricity generation mix. Therefore, the estimated MEF in a 

future year represents a marginal change in that future energy system, not the 

change from current conditions to that future system, which could be large. 

 

Both modelling techniques rely on detailed historical data for parameters such as 

load, generation, trade, and prices. Data availability is one of the key reasons we have 

focused on Alberta in this analysis. Availability of data is a critical component for 

similar analysis to be done for other regions. In some cases, simplifying assumptions 

could be made where data is not available (such as applying load shapes from a 

neighbouring or similar region), but could possibly undermine the accuracy and policy 
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relevance of the analysis. Other regions may have unique characteristics that should 

be considered. For example, analysis such as [35] and [36] focus on jurisdictions with 

large hydro resources. In these studies, the operational characteristics of hydro 

facilities are particularly important. 

 

There would definitely be benefits in integrating the different models presented in 

this report in a national modelling platform as these could be used for future projects 

of Canadian electricity systems. Their assumptions and limitations would have to be 

clearly stated, however, so these are not used beyond their capabilities. The main 

challenge would be in providing publicly available input data for all Canadian 

provinces and territories. Such data would be very valuable especially if sources are 

identifiable and estimations and assumptions are vetted by experts in the field. 
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7. Future Work 

As an immediate next step, the comparison proposed in this report will be expanded 

to cover more provinces starting with Ontario as most of the input data required will 

be readily available from the Independent Electricity System Operator (IESO). Other 

models providing outputs that can be used to compute metrics such as average and 

marginal emission factors will also be investigated. This includes various open-source 

unit commitment and dispatch (UC&D) models such as the SILVER model developed 

by the University of Victoria in British Columbia and the E3 RESOLVE model. Unit 

Commitment and Dispatch approaches have several applications beyond marginal 

emission factors calculation. In addition, these models are critical to consider in the 

planning stage to ensure that solutions are feasible – especially given changes in load 

characteristics from electrification and increased adoption of variable renewables. In 

the context of larger planning exercises, it will feed into other power system models 

as well as other applications models, taking their output as input and vice versa.  
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