



# Managing data and workflow in energy system modelling

Juha Kiviluoma

Senior scientist, VTT Technical Research Centre of Finland Senior energy systems researcher, University College Dublin

**KU LEUVEN** 

12<sup>th</sup> Jan. 2021 The Canadian Internet





## Challenges

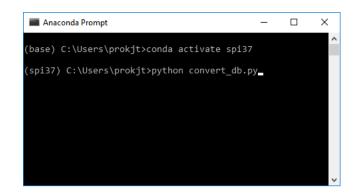
- Data curation and data processing
  - Where did this data come from?
  - Who has made this change and why?
- From an individualistic process to a collaborative workflow
  - 'Well, I think the data is somewhere in my laptop...'
- Science needs replication
  - Tool specific errors compare using same data
  - Errors in data more eyes on the same data set
- Analysing energy systems require multiple scales
  - Temporal: from milliseconds to decades
  - Spatial: from process level to the whole globe





#### **Challenges continue**

- Sharing data vs. sharing data processing
  - Confidence in data?
  - Improving the data processing together
- Interaction with the wider audience
  - Visualization, automatic web pages
  - Ability to change assumptions and run

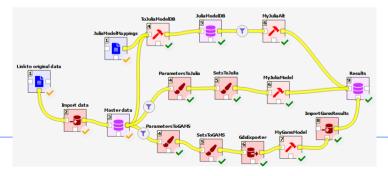









# **Solutions**

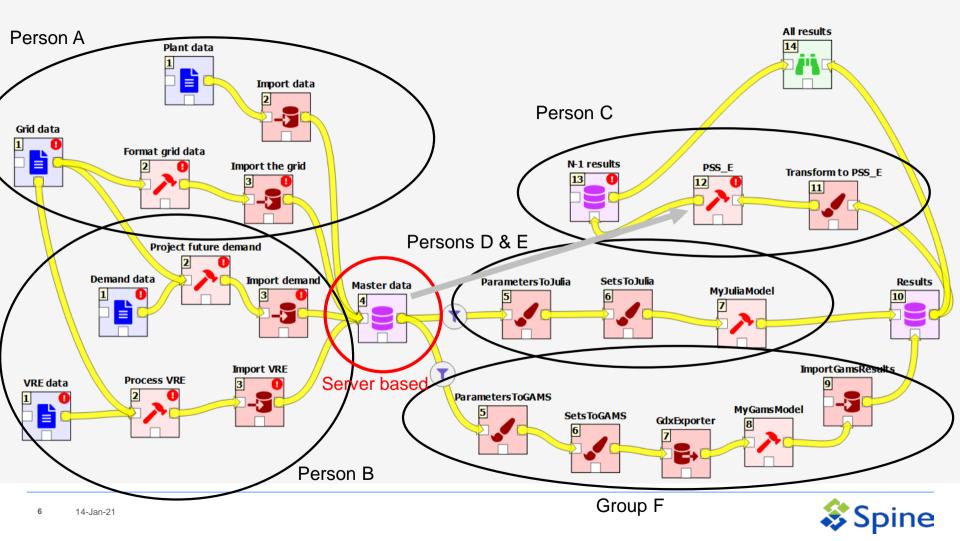



#### **Pieces of code**

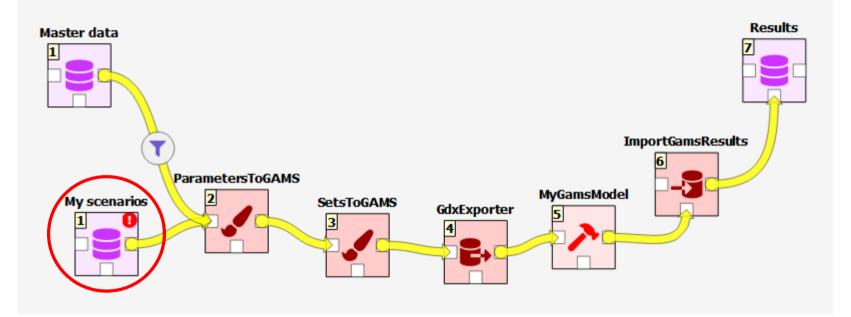
- Flexibility
- Expert user

#### Workflow management

- Easy for regular user
- Flexibility (may require expert skills)







#### A monolithic program

- May be easy to learn
- You're dependent





# Group F



# Plug-ins!



# GAMS

Integrated Development Environment

#### Local program

- It works
- Ownership
- Complex workflows difficult to share

#### Workflow management

- Runs on your own machine from open source code
- Computation can be outsourced
- Share the workflow
  - Partial projects
  - Version control
  - Server-based databases

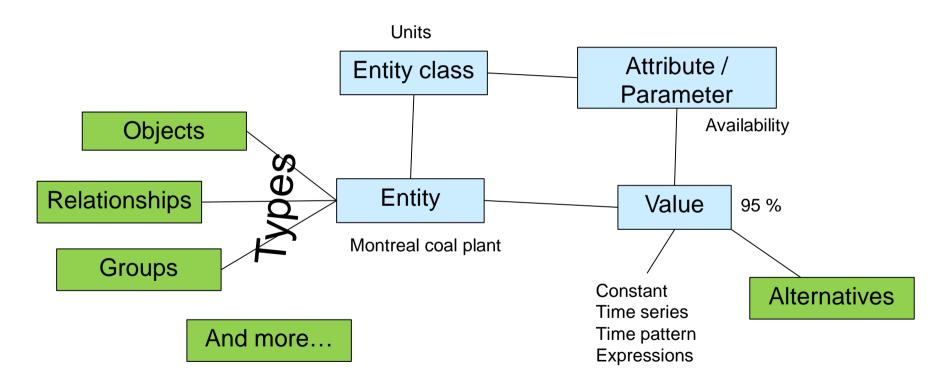




#### **Cloud application**

- Outsourcing:
  - Maintenance
  - Computation
  - Ownership
- Allows shared workflow




#### Data structure should be generic

- The workflow should not care what data goes through
- Needs to include the structure of the data
  - E.g. Power plant B is in location X
  - It's a graph
- The interface can display and manipulate any data without changes to the interface
- The tools can be made generic (when it makes sense)
  - E.g. a missing values replacer



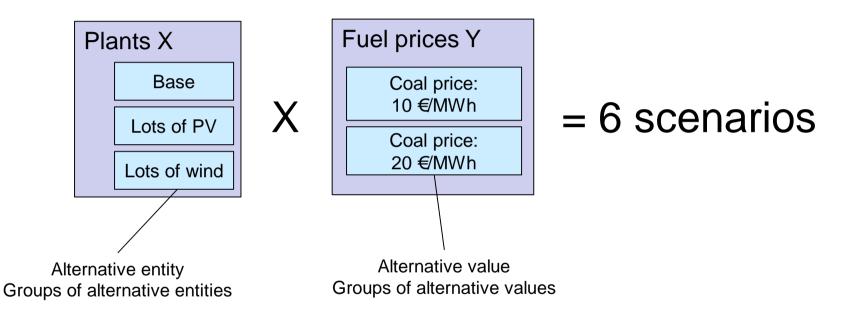


# Spine Toolbox generic data structure (EAV with classes and entity types)



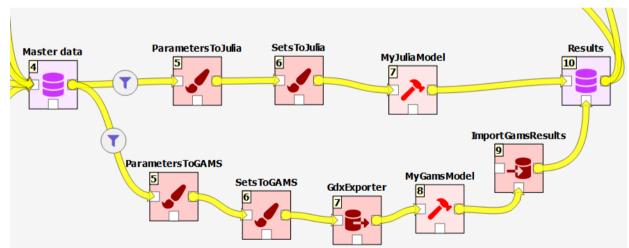


#### Passing data between tools


- The generic data structure of Spine in combination with the API to the Spine Database enables a standard way to pass data between tools
- Moving to a standard allows tools to communicate more easily

- Data can also be passed by other means (e.g. files)
- Spine Toolbox includes a generic data importer
  - Excel, CSV, GDX, JSON and more can be added
- Generic data exporter is work in progress






#### Alternatives, scenarios and recipes





- Models have different data requirements
  - Investment model: less detail, but investment related data too
  - Power system stability model: high grid detail, but only snapshots in time
- Spine Toolbox supports tools, features and methods to filter what is sent to which tool from the same database
  - Work in progress





## Nomenclature / ontology

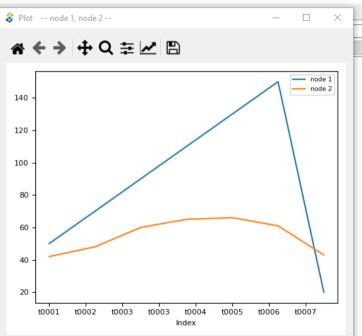
- How do you like to call things?
- How does your different models call things?
- Is there a shared nomenclature available?
- Are there other differences (data form or data structure)?
- Spine Toolbox does not force you to use anything
- Make your own nomenclature or use a shared nomenclature
- Transformations need to be maintained (from the common nomenclature to tool specific nomenclature)
- A common nomenclature makes life a lot easier (lot less transformations needed)
- Spine Toolbox has internal support for common transformation operations
  - ...work in progress
  - ...and you can do anything with Python underneath



### **Importing data**

- Need to be careful easy to overwrite your work
- Currently Spine Toolbox imports to a new alternative (one entity can have alternative values for the same data)
- In future, we need to offer users more freedom to choose how to treat incoming data




#### Time series / array data

| Object parameter value 🗗 |             |                |                  |                 |             |  |  |
|--------------------------|-------------|----------------|------------------|-----------------|-------------|--|--|
| object_class_name        | object_name | parameter_name | alternative_name | value           | database    |  |  |
| grid_node node 1         |             | elec_demand    | base             | Map Master data |             |  |  |
| 🕞 grid_node 🛛 node 2     |             | elec_demand    | base             | Map             | Master data |  |  |
|                          |             |                |                  | None            | Master data |  |  |

| Pivot ta | able        |             |
|----------|-------------|-------------|
|          |             |             |
|          | parameter 🕨 | elec_demand |
| gri      | id_node 🛛 🔻 |             |
| no       | de 1        | Map         |
| no       | de 2        | Map         |
|          |             |             |

Currently data in JSON - need to enable binary formats

| ivot table |          |        |  |
|------------|----------|--------|--|
| (X)        |          |        |  |
| grid_node  | • node 1 | node 2 |  |
| index 🔹    | -        |        |  |
| t0001      | 50.0     | 42.0   |  |
| t0002      | 70.0     | 48.0   |  |
| t0003      | 90.0     | 60.0   |  |
| t0004      | 110.0    | 65.0   |  |
| t0005      | 130.0    | 66.0   |  |
| t0006      | 150.0    | 61.0   |  |
| t0007      | 20.0     | 43.0   |  |





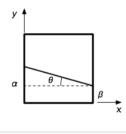
### Metadata

- Spine Toolbox supports metadata and importing metadata
  - Work in progress
- Metadata is complicated
- Same metadata may apply to multiple entities or to multiple parameter values
- Metadata can be partially same for multiple data objects
- How to avoid replication
- How to keep history (when someone changes one data item and others with same metadata remain unaffected)
- Common use case: user changes multiple records at once
- Spine Toolbox works with commits
  - Suggest to insert a commit message
  - Undo possible before commit
- Thinking how to maintain full history of data needs to be user choice



## The power of Python and Julia

- Spine Toolbox has an API in Python and in Julia
  - Direct access to the Spine databases from these languages
  - Embed Python or Julia scripts
- Python has almost everything already in open source
- Julia promises to be very fast




## Jupyter Notebooks as Toolbox items (WIP)

| Ċ JU | іру  | ter  | symbloo  | ck (auto | saved) |      |   |               |      | 4          |
|------|------|------|----------|----------|--------|------|---|---------------|------|------------|
| File | Edit | View | Insert   | Cell     | Kernel | Help |   |               |      | Python 2 O |
| ₿ +  | ۶    | ආ ∎  | <b>↑</b> |          | C Code | e    | ÷ | Cell Toolbar: | None | \$         |

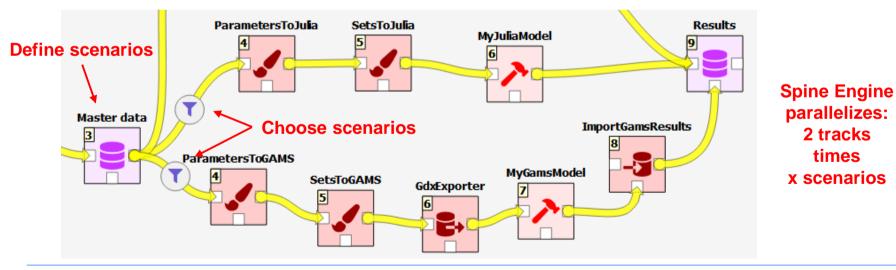
#### Three sides wetted

Reorient our point of view to make the analysis easier. Start by assuming that three sides of the block are at least partially immersed. Assume also that  $\rho \leq 1/2$  and  $\theta \leq 45^{\circ}$ .



In [1]: from sympy import \*
 init\_printing()

In [2]: alpha, beta, rho, x, y, theta = symbols('alpha beta rho x y theta')


#### Geometric equations:

```
In [3]: e1 = rho - (alpha + beta)/2
e2 = tan(theta) - (alpha - beta)
s12 = solve((e1, e2), (alpha, beta))
In [4]: s12
Out[4]: \left\{\alpha: \rho + \frac{1}{2}\tan(\theta), \quad \beta: \rho - \frac{1}{2}\tan(\theta)\right\}
```

### Spine Engine parallelizes workflows

- Spine Toolbox does not execute workflows (it stays responsive)
- Spine Engine uses Dagster to execute
  - To be cloud / computing cluster enabled
- Parallelization and headless execution



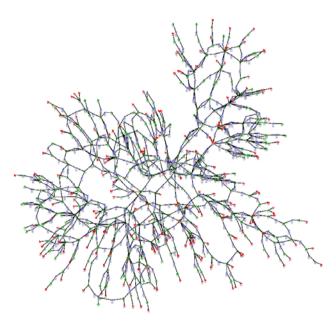




## Spine Toolbox is in early deployment mode

- At VTT we have started migrating data and tools to run on Spine Toolbox
- KU Leuven is using it national projects
  - Building Julia models
- KTH using it in MSc and PhD student projects
- Our open source GAMS model Backbone has 20-30 users in 5 countries
  - We have data conversion from Backbone to Spine Toolbox format and are starting to test using it in real projects
  - Nordic Energy Research funded FasTen and Amber projects (actual co-modelling between Baltic partners and VTT
- EU project TradeRES will be using Spine Toolbox
  - Orchestrating 2 optimization models and 4-5 agent based models to study electricity market design for high wind and solar futures
  - All running from a single database
  - First tests underway data migration to happen next
- Spine project has 9 more months documentation and building missing features (we're still well resourced for those 9 months)
- Trying to get new funding also for development (EU calls forthcoming, also involved with G-PST)
- Very happy to partner with resources from elsewhere this is open source

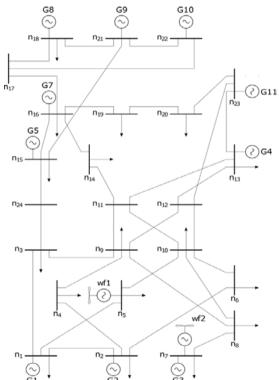







# Spine case studies to demonstrate capabilities

### A1 Irish dispatch study with power flows


- The case study aims at replicating the functionality previously implement in Energy Reform's Epiphron software.
- The model includes three control areas, several units, one storage, various fuels.
- It is a rolling horizon unit commitment model.
- The current Spine implementation relies on Spine Toolbox and uses a port of Epiphron to Julia following Spine Model style.





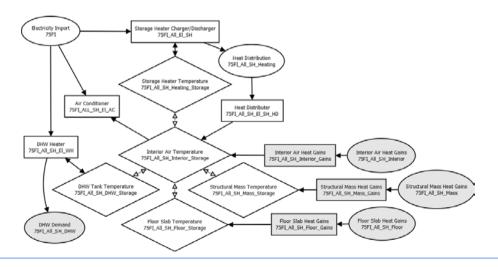
# A2 Belgian gas grid study with pressure driven gas transfer

- The purpose of this study is to reproduce a gas transmission system with pressure-driven gas transfer. Moreover, the gas transmission system is linked to the electricity system.
- Many gas variables and equations were included in a Spine Model fashion, using the *extend* functionality.
- Results using Spine Model are well aligned with the original model.





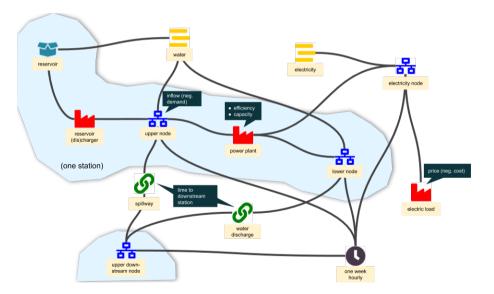
#### A3 District heating study of Stockholm


- The purpose of this case study is to simulate one year of operation of a subset of Stockholm's district heating system.
- The system includes 1 extraction condensing steam turbine, 2 back-pressure turbines, 1 gas turbine and 3 heat boilers.
- Ramp constraints and different types of start are neglected at the moment.
- Results using Spine Model are well aligned with the original model.





# A4 Cost optimisation study with building heat physics


- This case study compares the performance of Spine Model against Backbone for a rolling unit commitment and economic dispatch optimisation of the Finnish energy system in 2020, including widespread flexible residential electric heating.
- Results using Spine Model are well aligned with the original Backbone model.





### A5 Hydro power study with river systems

- The purpose of this study is to simulate one week of operation of the Skellefte river including fifteen power stations.
- Results have benn validated and are well aligned with the reference model.





### **Ongoing case studies**

- B1 Spatial aggregation of nodal systems
- B2 Temporal aggregation of time periods
- B3 Planning a low emission transport sector
- B4 Biomass resource constraints
- B5 Industrial energy use
- C1 Market design for integrated energy systems
- C2 Power grid investments under uncertainty
- C3 Integrated energy system planning with high operational detail



#### Resources

- Spine Toolbox repository: <u>https://github.com/Spine-project/Spine-Toolbox</u>
- Spine Toolbox Windows release executables: <u>https://drive.google.com/drive/folders/1t-AIIwRMI3HiYgka4ex5bCccl2gpbspK</u>
- Spine project website: <u>http://www.spine-model.org/</u>
- Highly flexible energy system modelling framework SpineOpt in Julia (<u>https://github.com/Spine-project</u>)
- Energy and power system modelling framework Backbone in GAMS (<u>https://gitlab.vtt.fi/backbone</u>)
- IRENA FlexTool in Excel/Mathprog (<u>https://www.irena.org/energytransition/Energy-System-Models-and-Data/IRENA-FlexTool</u>)



#### Spine: Open source toolbox for modelling integrated energy systems



- Project part funded by the Horizon 2020 program of the European Union
- LCE-05-2017 Tools and technologies for coordination and integration of the European energy system
- 4 year project commenced October 2017 with a €3.7m budget



5 Partners, collaboration with NREL & DTU

www.spine-model.org

spine\_info@vtt.fi

