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A Cluster-Based Load Model for a Resilient and Sustainable Community 

 

Executive Summary 
The proposed load model supports clean electricity utilization in a resilient system during severe climate 

conditions. While the existing load model aggregates all system components (loads, local generations, 

regulators, capacitors, etc.) at the customer or substation level, the proposed load model segregates load 

classes of different sizes, distributed energy resources (DERs) and energy storage systems (ESSs) to 

develop a multi-level model of demand/generation interaction that considers energy 

consumers/prosumers as customers. This new model uses the electricity demand/generation relationship 

among different customers (consumers/prosumers), sub-clusters, clusters, feeders and substations as 

well as the impact of DERs/ESSs at different levels. It enables the investigation of DER/ESS innovation 

deployment and requirement in demand/generation reliability and efficiency to support a low-carbon 

future. The proposed cluster-based load model also facilitates end-user engagement in energy efficiency 

programs and provides a support for policy-makers, energy market regulators and standard developers 

to accelerate deployment of clean energy technologies. As well, it facilitates policy pull to complement 

aggregator/end-user engagement with the required regulations and standards in a flexible and open 

market. This multi-level load model supports sustainable community development by providing a multi-

level demand/generation relationship that opens new multi-size business opportunities for customers 

and community engagement as well as large investors to participate in different small/medium/large 

business activities. Overall, the proposed model is an essential tool for active electric distribution network 

that allows potential engineering and economic services, adds value to energy markets, and enables 

smooth integration and collaboration within the energy ecosystem. 

 

1 Objective: 
The objective of this project is to model distribution system loads in terms of a set of dynamic clusters 

that consider the stochastic nature of renewable energy resources, consumers/prosumers, critical loads, 

available energy storage, and end-user engagement as active participants in the energy market and 

energy efficiency programs. This cluster-based load model objective is supported by the following:  

 Escalating digitization within the active distribution network (ADN). Many intelligent network 

elements now have advanced sensors with real-time computational capability. Furthermore, the rapid 

advancement of IoT technologies and high-speed communication make it possible to drive the ADN 

as multi-level clusters that provide services to the electric grid and energy market. The smart grid 

transition can be enhanced by mapping the large power system into a set of smart clusters that have 

self-manageable, self-adequate, self-sufficient and self-healing features to drive low-carbon and cost-

efficient assets and networks with a resilient capability under severe climate conditions.  

 A dramatic change in the structure of the power system. Conventional loads are continuously 

changing with the emergence of new technologies. At the same time, there is a continual increase in 

the penetration level of distributed energy resources and energy storage systems. This change 



emphasizes the use of different technologies concentrated at the grid-edge close to customer loads, 

which provide new energy services to a cluster of customers within a distribution network.  

 Customer engagement and consumer behavior is the focus of electrical utilities and the energy 

market. The two activities have a varying relationship with a stochastic nature that impacts the load 

model. The main characteristics of these components can be accurately modelled at multi-level (end-

user customer, sub-cluster/cluster/feeder/substation) rather than at the end-user level or  

aggregated at the substation level. Multi-level modelling enables mature interaction relationships 

among components, distributed DERs/ESSs, and loads.  

 The global electricity markets are enormous. As technology deployment trends accelerate, the value 

of distributed assets and energy services can be fully implemented, managed, and smartly controlled 

in a cluster-based style instead of an aggregated component. The focus in the energy open market 

has great potential beyond estimating energy generation and consumption metrics. Rather, it has 

considered an electric asset-based model and strongly emphasized on customer-based models. 

Hence, zooming into cluster-based models provides the incentive for prosumers, consumers, and 

market players (commercial and industrial) to participate in an energy marketplace where customer 

engagement emphasizes that they are front and center in the energy market interests. Such clustering 

permits scalability that allows multiple marketplaces grow and to be established in parallel while the 

management of the ADN benefit from the impact of multi-level model data on consumer behavior, 

cluster and system performance. The deployment requirements of low-carbon cost-efficient networks 

and system needs will also be enabled. 

 Policies and regulations inhibit or accelerate technology trends. In this case, for clean energy growth 

as well as resilient and sustainable communities, policies and regulations are not only an advantage 

but also a requirement. Policies and regulations differ from country to country and region to region. 

In general, the current policies, standards and energy market are in continuous evolution to adopt 

system changes and new technology deployment towards carbon-free resilient networks. Considering 

a cluster-based load model allows for a clear understanding of demand/generation interaction and 

the impact of clean technology deployment from end-user up to substation level. This understanding 

helps standard- and policy-makers and regulating authorities to implement a time-plan for developing 

upgraded versions that facilitate new opportunities for customers, communities, and third-party 

engagement. 

 

2 Model Development: 
The model is developed considering the following options: 

1. Analytical model based on understanding the behaviour of different components in a cluster and their 

impacts on the cluster demand/generation. 

2. Numerical model (Probabilistic model) based on data collected from measurements and simulations. 

3. Numerical-Analytical integrated model 
 
The power system utilizing this model is assumed flexible in size and operation and supports clean energy, 

AC/DC hybrid configurations, customer engagement and choices. Figure 1 shows a conceptual 

representation of a cluster-based load model as applied to a simulated version of the IEEE 123 system. 



Sub-clusters (C1A, C1B, C1C, C1D), as illustrated in the figure, can be integrated to develop Cluster 1. The 

integration of adjacent sub-clusters from two different clusters are also presented (for example, C1C-C2C 

and C1B-C3A). 

The load model maps system loads/nodes into a set of dynamic clusters of boundaries that are defined 

based on the capability of the available resources to provide a reliable energy service, load type/class, 

new business opportunities, or expected climate resilience level. The clusters’ energy coverage is 

impacted by daily and seasonal demand/generation profiles as well as consumer behavior/activity and 

participation in the energy market. 

  
Figure 1: Simulated IEEE 123 system for modelling of different clusters and sub-clusters. 

2.1 Model Nature and Cluster Development: 
In the proposed project, the nature of the model is composed of clusters/sub-clusters with components 

consuming, storing, and generating energy. Their input/output relationship is influenced by both direct 

and indirect factors. The modelling accuracy is increased by gradually increasing the component size based 

on different engineering and/or business applications. Each cluster/sub-cluster may be developed from 

any of the following components: 

1. Cluster Load component: This includes 3-phase and 1-phase motor loads, power electronic loads, 
static loads and critical loads. The load composition, time of use, power electronic interfacing and 
control, contactors and protection devices as well as voltage and frequency sensitivity are the main 
factors used to define the nature of this component.  The load component size in the developed model 
is not only presented as a lumped (aggregated load) but is gradually increased to include: 

a. Single end-user  
b. Large load (industrial plants) 



c. Critical loads (hospitals, data centers) 
d. Cluster load level 
e. Feeder load level 
f. Substation load level 

These loads are classified to serve residential, commercial, industrial, agriculture, critical-loads, 
transportation systems or mixed classes. 

2. Cluster DER component:  This includes fuel cells, wind turbines, solar photovoltaics (PV), and 
microturbines. Both DERs after the meter and before the meter are considered in the model, which  
is categorized as: 

a. Rotating machine-driven distributed generations.  
b. DC source-driven distributed generations.  

The model accuracy is enhanced by considering the following: 
a. Penetration level of variable renewable energy resources. 
a. Renewable energy and demand uncertainties.  
b. Isolated cluster DER survivability and resiliency. 
c. Maximum-coverage DER criterion (self-adequacy or self-sufficiency). 
d. Limited DER capacity and availability. 
e. Continuous operating time. 
f. DER dynamic or fixed cluster boundaries (isolation witches and automation level).  
g. Impact of grid flexibility, policies, incentives and aggregators on cluster generation-demand.  
h. Sensitivity of cluster to Transmission/Distribution interruptions.   

3. Cluster dispatchable/non-dispatchable generation component: This includes diesel generator and 
natural gas generator as well as combined heat and power units.  The following are considered to 
enhance the accuracy of the model:  

a. Percentage of dispatchable/non-dispatchable energy resources. 
b. Dispatchable/non-dispatchable generation capacity.  
c. Isolated cluster survivability and resiliency. 
d. Maximum-coverage criterion (self-adequacy or self-sufficiency). 
e. Limited generation capacity and fuel availability. 
f. Continuous operating time. 
g. Dynamic or fixed cluster boundaries (isolation witches and automation level). 
h. Impact of grid flexibility, policies, incentives and aggregators on cluster generation-demand.  
i. Sensitivity of cluster to Transmission/Distribution interruptions. 

4. Cluster electrical energy storage component: This includes energy storage systems (ESSs) and electric 
vehicles (EVs). The following are considered to enhance the accuracy of the model:  

a. Penetration level of energy storage systems and electric vehicles.  
b. Impacts of incentives and policies on EVs/ESSs demand/generation profile.  
c. Impact of public charging networks on EVs/load profile. 
d. Impact of smart charging, vehicle-to-home (V2H) and vehicle-to grid (V2G). 
a. The impact of controlled/uncontrolled charging on electricity demand. 

5. Cluster end-user engagement program component: While most energy utilities are new to the 
pursuit of customer engagement, many are exploring how to achieve it with their customers. Hence, 
this component is considered. It includes the following elements that have direct/indirect impact on 
the clusters’ demand/generation relationship:   

a. Customer behavior  
b. Demand side management 

 Demand response 

 Energy efficiency program (EMS) 



c. Aggregator/end-user interaction 
d. Engagement in new business opportunities. 

6. Cluster system components: This includes transformers, feeders, voltage regulators, load shedding 
and underfrequency/undervoltage, as well as other substations protection and control devices, etc. 

7. Policies and standards:  The indirect impact of this component on the cluster demand/generation 
model is considered. 

 

2.2 Analytical-Based Model: 
Figure 2 represents the cluster-based analytical load model. The analytical (component) load is an 

upgraded version of existing models, such as the complex load model (CLOD) and the composite load 

model [12, 21, 22, 23, 26, 27]. The model considers an active distribution network (ADN) with a significant 

amount of DERs, prosumers, ESSs, and conventional and controllable loads, as illustrated in Figure 1.  

 

The model enables the 
modeling of the impact of 
control, protection, and 
power electronic 
interfacing devices for each 
component. The idea is to 
represent the dynamic 
nature of demand and 
generation and their impact 
on sensitive loads or during 
dropping and restart (or 
ride-through) under various 
operation conditions.  
 

The impact of distributed 

energy resources, storage 

systems, and distribution 

system network’s 

components is also 

considered in the multi-

level load model.  

 

Figure 2: Cluster-based load model. 

The stochastic nature of the demand/generation interaction is considered in the analysis in order to 
develop a probabilistic model within each cluster/sub-cluster and at the feeder or substation level. The 
indirect elements that may influence the demand/generation relationship are also integrated in the 
model. Considered as well are the impact of end-user behavior and/or engagement of energy efficiency 
and demand response programs, the influence of aggregators, new business opportunities, and 
developed policies, regularity incentives and standards. 



Samples of end-use components in a commercial building, commercial sector and sector load break-down 

during summer peak are presented in Tables A1, A2 and A3 [23, 24]. ZIP models are used to describe the 

relationship between active and reactive power as well as the impact of voltage-frequency change on 

power. Parameters for this model are interpreted similar to those of the composite load model, 

considering constant impedance, constant current, motor loads, and the power electronics component of 

the load. 

2.3 Type of Results in Analytical-Based Model: 
The project model results have two forms: 

 A mathematical relationship, which includes all the cluster demand/generation components that 
consider all influencing factors (direct/indirect).  

 A cluster/sub-cluster load profile based on the deterministic or stochastic nature of the cluster 
components. 

 
The initial results of the mathematical model (only demand) are considered in the following operation 
scenarios: 

 Static characteristics of load model: 
Assuming the number of load-model component types is “l” and the number of end-use 
components in a building/sub-cluster/cluster is k, the mathematical representation of the 
demand of any end-use component (k) is: 
 

𝑃end−use,k = ∑  (𝑇𝑂𝑈𝑙 ) ∝𝑘,𝑙 𝑃k
𝑙
1   [ µ1,𝑙 (

𝑉

𝑉𝑜
)
𝑙,𝑎1
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𝑉
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)
𝑙,𝑎2

+ µ3,𝑙 (
𝑉

𝑉𝑜
)
𝑙,𝑎3
](1 + 𝐾𝑝𝑓∆𝑓) ]         (1) 

 

The cluster load from any model component type (l) is: 

 

𝑃end−use,𝑙 = ∑  (𝑇𝑂𝑈𝑙 )  ∝𝑘,𝑙 𝑃k  
𝑘
1                                                                    (2) 

 

The total cluster load of the composite components is: 
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µ1,𝑙 , µ2,𝑙 , 𝑎𝑛𝑑 µ3,𝑙 are the ZIP parameters, ∝𝑘,𝑙 represents the percentage of the load model 

composition components, and 𝑇𝑂𝑈𝑙 is the percentage of time of use component for each load 

model component type. The frequency deviation is ∆𝑓 = 𝑓 − 𝑓0 and 𝐾𝑝𝑓 =
𝜕𝑃

𝜕𝑓
= 0 𝑡𝑜 3.0.  

The equivalent circuit impedance of the three-phase induction motor is used to initialize the 

steady-state motor model. The reactive power consumption is defined based on the terminal 

voltage and active power load level, as well as the slip of the motor. 

 



 Dynamic characteristics of load model:  

In a cluster-based model, a set of algebraic and differential equations is used to represent the 

motor behaviour. These equations are derived from the dynamic physical response of the motor 

components and the steady-state circuit model response. 

 

 Operational characteristics of load model:  

The operational characteristics of some loads influence the dynamic response of the model. Type 

A motor, for example, can be categorized as 20% of larger 200-500 HP motors and have their first 

trip by the building energy management system (EMS) at 0.65 pu voltage after 100 ms. These 

motors are reconnected manually. On the other hand, 75% of small 10-25 HP A type motors have 

their trip by contactors at 0.50 pu voltage in less than 2 cycles. The contactors reclose at around 

0.65 pu voltage within 100 ms, and the remaining 5% of the motors assume ride-through during 

disturbances. Table 1 presents a sample of industrial type A motor parameters. Similar 

characteristics are provided for other types of motors (B, C and D). The power electronic load 

component (PE) of the model represents an aggregate effect of their loads. The model assumes 

constant active and reactive power with unity power factor. The active and reactive PE load 

operational limits are defined by 𝑉𝑑1 ≈ 0.7 𝑝𝑢 and 𝑉𝑑2 ≈ 0.5 𝑝𝑢. The active and reactive power 

reduces linearly to zero consumption between voltages 𝑉𝑑1 and 𝑉𝑑2. The PE load reaches zero 

when the voltage reduces below 𝑉𝑑2.  All of the composite load parameters with sample values 

are listed in Table A.4. 

 

Table 1: Sample of Industrial Motor A Load Parameters 

 

 

Parameter Define/Unit Default

LfmA Loading Factor [pu] 0.75

RsA Stator Resistance [pu] 0.04

LsA Stator Reactance [pu] 1.8

LpA Transient Reactance [pu] 0.12

LppA Sub-transient Reactance [pu] 0.104

TpoA Transient OC Time Const [sec] 0.095

TppoA Sub-transient OC Time Const [sec] 0.0021

HA Inertia Constant [sec] 0.1

etrqA Torque Speed Exponent 0

Vtr1A Undervoltage Relay Trip 1 Vmag [pu] 0.65

Ttr1A Undervoltage Relay Trip 1 Time [sec] 0.1

Ftr1A Fraction of Motors w/ UV Trip 1 [pu] 0.2

Vrc1A UV Reclose 1 Vmag [pu] 0.1

Trc1A UV Reclose 1 Time [sec] 9999

Vtr2A Undervoltage Relay Trip 2 Vmag [pu] 0.5

Ttr2A Undervoltage Relay Trip 2 Time [sec] 0.02

Ftr2A Fraction of Motors w/ UV Trip 2 [pu] 0.75

Vrc2A UV Reclose 2 Vmag [pu] 0.65

Trc2A UV Reclose 2 Time [sec] 0.1



2.4 Probabilistic-Based Model 
Figure 3 shows the three stages of the probabilistic cluster-based modelling approach. Historical data are 
used as input to a data conversion stage. This stage is responsible for calculating the per-unit output/input 
power of the DERs/ESSs/demand components within a cluster and for conditioning these data to remove 
any outliers and interpolate any missing data. In the second stage, the extracted per-unit powers are then 
grouped based on the characteristics of DERS/ESSs/demand, class type, season, time of use, and day. For 
each group, the goodness-of-fit methodologies are used to obtain the best-fit probability density function 
(PDF) that accurately models the probabilistic behavior of the demand/generation relationship within a 
cluster. 
 
Standardizing the historical data format is an essential requirement in order to automate the modelling 
engine. Historical data strings should contain the values of the variable parameter, time stamp, 
temperature, and generation type. The conditioned data is ready to be classified into groups of closely 
correlated points. The goodness-of-fit algorithms find the best-fit PDF to describe the probabilistic 
variables, i.e., the output/input power from the DERS/ESSs/demand in our model. The three stages result 
in the selected PDF and its parameters. Note that the grouping stage can output daily profiles for the 
DERS, ESSs, or demand. 
  

 
Figure 3: Probabilistic cluster-based modelling approach. 

2.4.1 Data Conversion: 
This stage depends on the probabilistic variable to be modelled. The functionality of the data conversion 

stage is to convert the given data into daily per-unit power profiles. The data conversion stage will be 

discussed in detail for each variable to be modelled. 

2.4.2 Grouping: 
The K-means unsupervised grouping technique [1] is used to group the power profiles into an unknown 

number of groups. Although the technique is unsupervised, as many types of renewable energy are highly 

dependent on the season, the number of groups is expected to be four (in case of wind) or five (in case of 

solar). The K-means grouping technique is based on minimizing the square of the error function presented 

in Equation (5).     

min(∑∑|| 𝑥𝑖
𝑗
− 𝑐𝑗 ||

2

𝑛

𝑖=1

𝑘

𝑗=1

)                                                                      (5) 

where || 𝑥𝑖
𝑗
− 𝑐𝑗 || is the distance between a data point 𝑥𝑖

𝑗
 that belongs to group 𝑗 and its centroid 𝑐𝑗. One 

advantage of this approach is the accurate grouping of profiles regardless of their time. In other words, if 

the day is a sunny day in winter and hence the wind profile is more like fall rather than winter, the grouping 

technique will group that day with fall days instead of winter days. 



2.4.3 Goodness-Of-Fit: 
The best-fit PDF can be selected using the well-known goodness-of-fit tests [2], [3]. These tests generally 

calculate a parameter called the test statistic, which is proportional to the error between theoretical 

(fitted) and experimental (historical) cumulative density functions (CDFs); hence, the PDF with the lower 

static is the one that better fits the historical data. If the available number of samples exceeds 2,000, both 

the Kolmogorov-Smirnov (K-S) test, as expressed by Equation (6), and the Anderson-Darling (A-D) test, as 

expressed by Equation (7), can be used to identify the best-fit PDF. The AD test is much more responsive 

to the tails of distribution, whereas the KS test is more responsive to the centre of distribution. 

𝐷 = max
1≤𝑖≤𝑛

 (𝐹(𝑋𝑖) −
𝑖−1

𝑛
,
𝑖

𝑛
− 𝐹(𝑋𝑖))                                                           (6) 

𝐴2 = −𝑛 −
1

𝑛
 ∑ (2i − 1)[ln F(Xi) + ln(1 − F(Xn−i+1))]

n
i=1                                     (7) 

2.4.4 Parametric Density Estimation 
Goodness-of-fit identifies the best probability density function that fits the given data set. An estimation 

of the PDF’s parameters is carried out using the maximum likelihood (ML) estimation algorithm. Usually, 

it is convenient to maximize the log-likelihood function 𝐿(𝜃). The maximum log-likelihood 

estimation searches for the parameter 𝜃𝑀𝐿 which best represents the samples x, as shown in Equation 

(8): 

𝜃𝑀𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝜖Θ (𝐿(𝜃)) 

𝐿(𝜃) = ∑  log (𝑝(𝑥𝑖; 𝜃))
𝑛
𝑖=1                                                                (8) 

The ML estimate is obtained by finding the stationary point of the log-likelihood function, as follows: 

𝜕𝐿(𝜃)

𝜕𝜃𝑗
= 0                                                                                (9) 

2.4.5 Wind-Based Generation Modelling  
In most cases, wind speed is the recorded parameter which needs to be converted into per-unit power. 
The WECS characteristics [4] can be used for the conversion. The approximate relation between wind 
speed and output power can be expressed as in Equation (10): 

𝑃(𝑣) =

{
 
 

 
 
0                                     0 ≤ 𝑣 ≤ 𝑣𝑐𝑖

𝑃𝑟𝑎𝑡𝑒𝑑  ×
𝑣 − 𝑣𝑐𝑖
𝑣𝑟 − 𝑣𝑐𝑖

       𝑣𝑐𝑖 ≤ 𝑣 ≤ 𝑣𝑟

𝑃𝑟𝑎𝑡𝑒𝑑                             𝑣𝑟 ≤ 𝑣 ≤ 𝑣𝑐𝑜
0                                         𝑣𝑐𝑜 ≤ 𝑣

       (10) 

The data structure required to establish the wind model and generate the daily profiles is given in tables 

2 and 3: 

Table 2: System Data for Wind-Based DER 

𝑃𝑟𝑎𝑡𝑒𝑑  𝑣𝑐𝑖  𝑣𝑐𝑜  𝑣𝑟  
Rated power 

(𝑘𝑊) 
Cut in speed 

(𝑚/𝑠) 
Cut out speed 

(𝑚/𝑠) 
Rated speed 
(𝑚/𝑠) 

 



Table 3: Data String for Wind-Based DER 

Time Wind Speed 
(𝑚/𝑠) 

Ambient Temperature 
(℃) 

 
In this way, wind speed data are converted into strings of per-unit powers with the time stamp and 

temperature. Afterwards, the data is organized as daily profiles to be propagated to the next stage. The 

wind data for two-successive years is used for developing the model in this report. The obtained daily 

profiles for the two years are grouped into four groups based on the season, as shown in Figure 4. The 

centroid of each group, obtained from the k-means technique, is highlighted in red. It is clear from the 

figures that the wind power has ultimate variability and is very stochastic (random) in nature. In addition, 

the centroid curve is not representative of the group, as it does not capture the wind variability within the 

season. 

 

Figure 4: Seasonal-based grouping of two-year daily wind generation.  

The approach recommended in this report for modelling of wind-based resources is the probabilistic 

approach. As denoted by stage 3 in the probabilistic modeling approach of Figure 3, a PDF fitting using the 

goodness-of-fit technique is used to establish the model. The probability distribution of the output power 

from wind for two-successive years and grouped based on seasons is shown in Figure 5. 



 

Figure 5: Seasonal-based probability distribution of two-year wind generation.  

The aforementioned goodness-of-fit techniques are applied to these data and the results are presented 

in Table 4. For a detailed discussion of this part, please refer to Appendix B. 

Table 4: Results of Goodness-Of-Fit Techniques 

 Winter Spring Summer Fall 

 K-S A-D K-S A-D K-S A-D K-S A-D 

Johnson-SB 0.03228 46.181 0.03198 4.1535 0.02604 2.7687 0.03395 7.1416 

Weibull 0.10157 125.45 0.07846 247.45 0.06007 169.09 0.09065 190.33 

Normal 0.08894 181.96 0.12714 71.088 0.10693 55.584 0.08715 49.691 

Beta 0.08885 49.029 0.1624 115.69 0.15562 93.358 0.15671 114.28 

As shown in Table 4, Johnson-SB is the best fit to the wind data, as it shows the least error in both tests 

(K-S and A-D). Therefore, the per-unit output power from wind-based resources can be modelled using 

the Johnson-SB PDF represented by Equation (11): 

𝑓(𝑋) =
𝛿

𝜆√2𝜋𝑧(1 − 𝑧)
𝑒(−

1
2
(𝛾+𝛿 ln(

𝑧
1−𝑧

))2), 𝑧 =
𝑥 − 𝜁

𝜆
                            (11) 

where 𝛾 and 𝛿 are shape parameters, 𝜆 indicates scale parameter, and 𝜁 denotes location parameters. 

The estimated values of the probability density function parameters using the aforementioned (ML) 

parametric density estimation are shown in Table 5. 

Table 5: Wind Model Parameters 

 Winter Spring Summer Fall 

𝛾 -0.01993 0.40832 0.48423 0.1866 

𝛿 0.48906 0.46673 0.55561 0.49059 

𝜆 0.95746 0.97881 0.97956 0.98015 

𝜁 0.00568 - 0.00765 - 0.00874 - 0.00616 



2.4.6 Solar-Based Generation Modelling  

In case of solar-based DERs, the solar irradiance and ambient temperature data are available with a time 
stamp. The data string required to establish the solar model is shown in Table 6.   

Table 6: Data String for Solar-Based DER 

Time Solar Irradiance 
(𝑘𝑊/𝑚2) 

Ambient Temperature 
(℃) 

However, the system data availability depends on the knowledge of the system and can be divided into 
two scenarios, as presented in tables 7 and 8: 

Table 7: System data for Solar-Based DER: Scenario 1 

𝑁 𝑃𝑟𝑎𝑡𝑒𝑑 𝑉𝑀𝑃𝑃 𝐼𝑀𝑃𝑃 𝑉𝑜𝑐 𝐼𝑠𝑐 𝐾𝑖 𝐾𝑣 𝑁𝑂𝑇 A 

Number 
of cells 

per  
module 

Rated 
power 
(𝑘𝑊) 

Voltage at 
maximum 

power 
point 
(𝑉) 

Current at 
maximum 

power 
point 
(𝐴) 

Open-
circuit 

voltage 
(𝑉) 

Short-
circuit 

current 
(𝐴) 

Current 
temperature 
coefficients 

Voltage 
temperature 
coefficients 

Nominal 
operating 

temperature 
(℃) 

Module 
area 
(𝑚2) 

 

Table 8: System Data for Solar-Based DER: Scenario 2 

𝜂 𝐴 (𝑚2) 
Conversion efficiency  Module area 

The solar data and system data are used to calculate the solar output per-unit power using equations (12) 
[5] or (13) for system data scenarios 1 or 2, respectively. 

𝑇𝑐 = 𝑇𝐴 + 𝑠𝑎 ( 
𝑁𝑂𝑇 − 20

0.8
 ) 

𝐼 = 𝑠𝑎[ 𝐼𝑠𝑐 + 𝐾𝑖( 𝑇𝑐 − 25)] 

𝑉 = 𝑉𝑜𝑐 − 𝐾𝑣 × 𝑇𝑐   

𝑃(𝑠𝑎) = 𝑁 × 𝐹𝐹 × 𝑉 × 𝐼 × 𝐴  

𝐹𝐹 =
𝑉𝑀𝑃𝑃 × 𝐼𝑀𝑃𝑃 

𝑉𝑜𝑐 × 𝐼𝑠𝑐
 

(12) 

(𝑠𝑎) = 𝜂 × 𝑠𝑎 ×  𝐴 × [1 − 0.005( 𝑇𝐴 − 25)]    (13) 

The solar data is formatted as a string of the per-unit power with the time stamp and temperature. The 
data will then be organized as daily profiles to be propagated to the next stage. The obtained daily profiles 
for five successive years are organized into four groups based on the season, as shown in Figure 6. The 
centroid of each group obtained from k-means is highlighted in red. Similar to the wind data, it is clear 
from the figures that the solar power is very stochastic in nature. In addition, the centroid curve is not 
representative of the group, as it does not capture the solar variability within the season. In addition, the 
solar power is zero for a long time during the 24-hour period (prior to hour 5 and after hour 20). These 
periods should be excluded from the modelling, as the power is known to be zero and therefore the 
grouping and modelling will be for the non-zero power periods.  



 

Figure 6: Seasonal-based grouping of five-year daily solar generation.  

The solar per-unit output power is grouped into four seasons and the aforementioned goodness-of-fit 

techniques are applied to the solar data for each season. The results are presented in Table 9. The results 

show that if the K-S test is considered, the Johnson-SB is the best fit, while if the A-D test is considered, 

the Beta is the best fit. As mentioned earlier, the K-S test is more sensitive to the tails while the A-D test 

is more responsive to the center data. According to [6], the A-D test is more powerful than the K-S test, 

and thus the solar model selected in this report is based on the Beta distribution.  

Table 9: Results of Goodness-Of-fit Techniques for Solar 

 Winter Daytime Spring Daytime Summer Daytime Fall Daytime 

 K-S A-D K-S A-D K-S A-D K-S A-D 

Johnson-SB 0.04591 354.2 0.02509 161.54 0.04461 65.941 0.02478 160.76 

Weibull 0.11335 43.48 0.10136 33.344 0.10527 24.151 0.10642 34.182 

Normal 0.1492 81.086 0.10495 41.778 0.08494 27.284 0.11095 48.747 

Beta 0.08274 27.957 0.05783 12.06 0.07428 8.2232 0.04741 12.517 

 
Based on the goodness-of-fit results, the Beta PDF expressed in Equation (14) is the solar model during 
different seasons, as follows: 

𝑓(𝑋) =
1

𝛽(𝛼1,𝛼2)

(𝑥−𝑎)𝛼1−1(𝑏−𝑥)𝛼2−1

(𝑏−𝑎)𝛼1+𝛼1−1
, 𝑎 ≤ 𝑥 ≤ 𝑏                                     (14) 

 

where 𝛼1 and 𝛼2 are shape parameters, and  𝑎, 𝑏 
are boundary parameters. The estimated values of 
the PDF parameters using the aforementioned 
(ML) parametric density estimation are presented 
in Table 10. 
 

Table 10: Solar Model Parameters 

 Winter Spring Summer Fall 

𝛼1 0.7359 1.0875 1.4617 0.73811 

𝛼2 1.2557 1.2697 1.3041 0.87307 

𝑎 0.01 0.04912 0.06654 0.0125 

𝑏 0.905 1.0403 0.88792 0.8775 
 

 
 
 



2.4.7 Load Model 
The load model is 
developed using the 
data given in the IEEE 
RTS [7]. According to the 
modelling approach 
presented in this report, 
load data is grouped into 
eight groups based on 
the season and day, a 
weekday or a weekend. 
The RTS data designate 
spring and fall as one 
season; consequently, 
the daily load curves are 
grouped into 6 different 
groups (3 seasons x 2 
groups/season), as 
shown in Figure 7. 

 
Figure 7: Seasonal-based grouping of daily load demand 

 
The k-means technique is used to find the centroid of the group, as highlighted in red in the figure. Unlike 
the solar and wind power model, it is clear from the load profiles that the centroid is a good representative 
of the group. Therefore, the load demand can be modeled using the six load profiles presented in Table 
11. 

Table 11: Load Demand Profiles 

 Winter Spring/Fall Summer 

Time (hr) Weekdays Weekends Weekdays Weekends Weekdays Weekends 

1 0.5764 0.5301 0.4495 0.4227 0.5233 0.4780 

2 0.5420 0.4893 0.4423 0.4115 0.4906 0.4522 

3 0.5162 0.4621 0.4281 0.3889 0.4743 0.4264 

4 0.5076 0.4485 0.4138 0.3720 0.4579 0.4199 

5 0.5076 0.4350 0.4209 0.3664 0.4579 0.4134 

6 0.5162 0.4418 0.4637 0.3664 0.4743 0.4005 

7 0.6366 0.4485 0.5137 0.3833 0.5233 0.4005 

8 0.7398 0.4757 0.6064 0.4171 0.6215 0.4264 

9 0.8172 0.5437 0.6778 0.4678 0.7114 0.5233 

10 0.8258 0.5981 0.7063 0.5016 0.7768 0.5556 

11 0.8258 0.6117 0.7135 0.5186 0.8095 0.5879 

12 0.8172 0.6185 0.7063 0.5298 0.8177 0.6008 

13 0.8172 0.6117 0.6635 0.5129 0.8095 0.6008 

14 0.8172 0.5981 0.6564 0.5073 0.8177 0.5943 

15 0.8000 0.5913 0.6421 0.5073 0.8177 0.5879 

16 0.8086 0.5913 0.6278 0.4847 0.7932 0.5879 

17 0.8517 0.6185 0.6421 0.4791 0.7850 0.5943 

18 0.8603 0.6796 0.6564 0.4960 0.7850 0.6072 

19 0.8603 0.6728 0.6849 0.5186 0.7605 0.6137 

20 0.8258 0.6592 0.6992 0.5636 0.7523 0.6137 

21 0.7828 0.6388 0.6849 0.5467 0.7523 0.6460 

22 0.7140 0.6252 0.6421 0.5355 0.7605 0.6008 

23 0.6280 0.5913 0.5708 0.5073 0.7114 0.5685 

24 0.5420 0.5505 0.4994 0.4791 0.5887 0.5168 

Figure 7: Seasonal-based grouping of daily load demand. 



Errors between a specific group’s centroid and all profiles belonging to this group are calculated. The 
probability density functions for these errors are shown in Figure 8. It is clear that the average error is 
almost zero with an error span range of ±5% for all models except for winter weekdays, where the error 
spans a range of ±10%. Error averages and standard deviations are calculated and presented in Table 12 
for the six load models:  

 
Table 12: Average and Standard Deviation of Error in Load Models 

 Winter Spring/Fall Summer 

 Weekdays Weekends Weekdays Weekends Weekdays Weekends 

𝜇 5.8600E-17 2.4779E-17 -3.4216E-17 2.1559E-17 -6.3215E-17 1.1921E-17 

𝜎 0.04597 0.03354 0.02965 0.02064 0.03862 0.02747 

 

Figure 8: Probability distribution of load demand errors for different groups. 

2.5 Energy Storage Probabilistic Model 
As discussed earlier, renewable energy resources generally have a volatile and intermittent nature that 

imposes challenges for energy management. However, buffering this stochastic supply in an energy 

storage system (ESS) can offer a reliable constant supply and reduce supply uncertainty. The dispatch of 

the ESS is difficult because of the randomness of the ESS’s state of charge (SoC). The ESS can be 

modelled as an energy queuing system that buffers renewable energy to offer a reliable and 

dispatchable supply to the system, as shown in Figure 9. 
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Figure 9: Layout of stochastic ESS model. 



The change in the SoC of the ESS can be expressed by the stochastic differential Equation (15):  

𝑑𝑄(𝑡)

𝑑𝑡
= {

𝑃𝑎𝑔𝑔.(𝑡) −
𝑃𝑑𝑖𝑠𝑝

𝜂

0   , 𝑜. 𝑤.
  , 𝑖𝑓 𝑃𝑎𝑔𝑔.(𝑡) >

𝑃𝑑𝑖𝑠𝑝

𝜂
 𝑜𝑟 𝑄(𝑡) > 0 .0                                    (15) 

 

where 𝜂 is the round trip efficiency of the ESS in charging and discharging. The CDF of the SoC can be 

approximated as presented in Equation (16): 

𝑃(𝑄(𝑡) < 𝑥) ≈ 1 −
𝑒−

𝜃2

2

𝜃√2𝜋
𝑒−

2𝜎𝑃𝑎𝑔𝑔𝜃
𝜖

 𝑥
 (16) 

, 𝜃 =∑

𝑃𝑑𝑖𝑠𝑝
𝜂 − 𝜇𝑃𝑎𝑔𝑔

𝜎𝑃𝑎𝑔𝑔
 (17) 

                                                                     

2.6 Type of Results in Probabilistic-Based Model 
The probabilistic model output is a probability density function (PDF) for the component’s power. From 

this PDF, some useful information could be extracted, such as the most probable value, the variation range 

and corresponding probability, the level and range of confidence, and so on. In addition, these models 

could be integrated with the Monte Carlo simulation (MCs) [8] technique to form a probabilistic tool that 

injects into a study the risks and uncertainties of the models. The general steps for the MCs process using 

a model PDF are shown in Figure 10. 

 

 
Figure 10: General steps for establishing a MCS-based probabilistic study. 

 



3 Modelling Results 

3.1 Cluster-Based Probabilistic Modelling 
Figure 11 depicts a cluster of different generation/demand elements connected together through a 

network. Each individual element can be modeled using the probabilistic models derived in the previous 

section. However, these models need to be integrated together to form a cluster-based model. The 

possible scenarios obtained from the combination of the individual models to form the cluster-based 

model is listed in Table 13. 

From the discussion of solar, wind, and demand modelling, it is clear that each component has different 

characteristics. The wind energy depends on the season, the solar energy is zero during nights, and load 

demand changes from weekdays to weekends. The initial stage of the cluster-based model is developed 

by combining these characteristics. Hence, the cluster is modelled using 16 different models for the 16 

possible operation scenarios. 
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Figure 11: Generic cluster layout. 

Table 13: Cluster-Based Models 

Cluster Model # Wind Demand Solar Cluster  Model Description 

1 

Spring 

Weekday 
Day Spring/Weekday/Day-time 

2 Night Spring/Weekday/Night-time 

3 
Weekend 

Day Spring/Weekend/Day-time 

4 Night Spring/Weekend/Night-time 

5 

Fall 

Weekday 
Day Fall/Weekday/Day-time 

6 Night Fall/Weekday/Night-time 

7 
Weekend 

Day Fall/Weekend/Day-time 

8 Night Fall/Weekend/Night-time 

9 

Winter 

Weekday 
Day Winter/Weekday/Day-time 

10 Night Winter/Weekday/Night-time 

11 
Weekend 

Day Winter/Weekend/Day-time 

12 Night Winter/Weekend/Night-time 

13 

Summer 

Weekday 
Day Summer/Weekday/Day-time 

14 Night Summer/Weekday/Night-time 

15 
Weekend 

Day Summer/Weekend/Day-time 

16 Night Summer/Weekend/Night-time 

 
The proposed modeling framework is applied to the system shown in Figure 12. The 
Summer/Weekend/Night-Time model is considered as an example of cluster-based modelling.  
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Figure 12: Sample cluster under study. 

 
The probabilistic power flow described in [9-11] is used to calculate the power flow to/from the cluster. 
The resulting power flow data are given in Figure 13 in the form of a PDF.  
 

 
Figure 13: Per-unit power PDF for summer/weekend/night-time cluster model. 

The best-fit PDF found for this model is based on the same procedures described earlier in the previous 
section and similarly the parameters are estimated using the ML estimation. The Johnson-SB described 
by Equation (11) is found to be the best-fit PDF for the cluster model. Model parameters are presented 
in Table 15: 

Table 14: Cluster Model Parameters 

Summer/Weekend/Night-Time Cluster Model 

𝛾 𝛿 𝜆 𝜁 
-0.34508 0.37567 1.1758 -0.9707 

 



3.2 Cluster-Based Load Profile Model 
Similar steps can be implemented to develop a daily-load profile for the cluster, rather than a PDF.  Each 

cluster is also modelled for the same 8 possible operation scenarios (Day-time and Night-time are 

combined in case of a daily load profile). For each scenario, the components of the cluster are modelled 

using their 24-hr profile rather than their PDF. The conventional power flow to/from the cluster is 

calculated at each hour of the day and thus a daily-profile is obtained for the cluster. As an example, Figure 

14 shows a sample of the per-unit daily power profile during summer/weekend for the cluster shown in 

Figure 12: 

 
Figure 14: Cluster model based on the per-unit daily power profile for summer/weekend. 

The probabilistic PDF model shown in Figure 13 can be used to estimate the probability of having energy 

surplus, deficiency, or adequacy within a cluster. The daily-profile model shown in Figure 14 identifies the 

time of day when these occasions occur.  

 

3.3 Dynamic Nature of Cluster-Based Model (Continuous and future studies): 
The proposed cluster-based load model increases the visibility of the effects of load response during 

steady-state and dynamic behavior. The objective is to ensure the ride-through of the DERS/ESSs and most 

of the loads, and to minimize the risk of additional motor stalling, generator tripping or voltage collapse. 

In order to illustrate the effect of motor stalling and tripping during faults, the response of load profile (P 

& Q) is simulated and compared with an aggregated load, as seen from the substation bus or at the C1A 

sub-cluster boundary. The voltage recovery at different locations show severe delayed voltage recovery 

and overshoot based on the load response and disturbance type. 

 



The advantage of the proposed model comes from its ability to model the loads for different applications.  

Figure 15 shows the accuracy of the sub-cluster C1A load as compared with the substation lumped load 

(blue load profile) for different system topology. While supplying the system from node 150, the dynamic 

load at C1A boundary can be represented by the red load profile. As the configuration of the system 

changes (alternative source from node 135), the load profile at the C1A boundary changes to a black curve. 

These changes in the load profile are important for cluster-based application and end-user involvement. 

The data are also important for developing resilient systems that balance available DERs with the cluster 

load under steady-state and dynamic scenarios. 

 

Figure 16 shows the voltage-frequency dependent load response during source disturbances. The cluster-

based load response is impacted by voltage-frequency variation as well as the selection parameters of the 

model during dynamic and steady-state operation. Defining the impact of voltage-frequency variation on 

generation/demand components of a cluster is an important continuous research area for developing 

accurate dynamic and steady-state models. 

 

 
Figure 15: Variations in load clusters boundaries based on system disturbances during different system configurations. 

 
Figure 16: Voltage frequency-dependent load response during source disturbances (parameters selection dependent). 

 



3.4 Mathematical Dynamic Model Parameters (Continuous and future studies): 
Upgrading the developed mathematical models using different cluster components is an important 

research area. This includes steady-state and dynamic models. The modelling upgrade procedure involves 

the integration of measurement-based and component-based models for online development of a 

clustered based model. Reliable estimation considers cluster-based load model parameters, development 

of dynamic equivalents for clusters and sub-clusters, and validation of an equivalent cluster-based 

dynamic model of an active distribution network. 

 

Figure 17 shows a simulated load 

model during steady-state and 

transient conditions. The model 

represents a distribution system load 

response to fault-induced voltage delay 

recovery. As can be seen, the dynamic 

behavior of the simulated load is 

modelled based on frequency voltage-

dependent relations as well as the  

operation behavior of P.E., A, B, C and 

D motors response to voltage 

disturbance.  

 

The selection of a mathematical model 

and the defining of its parameters for a 

cluster-based load model is an 

important continuous research area for 

our research team. 

 

 

Figure 17: Tuning dynamic model parameters of simulated load during 

steady-state (S-S) and dynamic behavior. 

3.5 Indirect Parameters of Cluster-Based Load Profile (Continuous studies): 
Changes in policies/regulations and market energy designs are essential in order to be able to model and 
optimize the use of load/DERs/ESSs in an ADN. This model is also needed to include the indirect impact of 
customer behavior response to these policies and regulations. The model supports a multi-level 
understanding of the interaction between end-user customers and the grid and supports utilities in their 
effort to create engaged and loyal customers.  It was reported in [29] that the Impacts of energy efficiency 
and DERs on electricity consumption in the USA indicate that a third of the states is already saving at least 
1% of electricity consumption each year, while another third of the states—most of those being relatively 
new to energy efficiency—is saving between 0.25% and 0.75%. The proposed cluster-based load model 
supports the optimal locational placement of DERs/ESSs, defines limitations of DER/ESS penetration, and 
highlights benefits of community solar and storage systems. It also supports policy-makers and market 
designers to define strategies and approaches leading to optimal implementation of distribution upgrades 
and replacements for conventional utility investments. Developing a cluster-based load model and 
understanding the demand/generation relationship at multi-levels in an ADN has other indirect non-
energy benefits, such as environmental benefits, health benefits, local economic development and lower 
maintenance costs. 
 



Figure 18 presents the initial results of the steady-state load profile of each component model of the 

demand in the commercial sector presented in Table A2. The system is assumed operating at the rated 

voltage and frequency. End-user components are modelled and the load profile of each component is 

estimated using Equation (2), as illustrated in Figure 18. The model results are generated considering a 

conventional system (dark blue bars) and active distribution network with solar and wind DERs (light blue 

bars). This segregated model is important for studying the contribution of each component in the total 

aggregated demand to support equipment manufactures and policy-makers.   

 

 

Figure 18: Steady-state load profile of each component model in commercial sector. 

 

Two types of DERs—solar and wind—are considered in this sector, with low and high penetration. For low 

penetration, the solar type is assumed for all commercial classes with a rated power of 10% (30% for high 

penetration) of the demand, while the wind type is assumed for some sectors at 10% and 1.0% (30% and 

3% for high penetration) for other commercial classes. These results support system designers to 

understand adequacy level, penetration limits, potential market benefits, and customer engagement. The 

total cluster demand/generation composite of all the components is estimated using Equation (4). The 

total DER contribution and demand during low and high DER penetration are estimated based on the time 

of demand/generation use as presented in Appendix A4 and as illustrated in Figure 19.   



 
 

(a) (b) 
Figure 19: Total cluster demand/generation composite of all components,  

(a) low DER penetration and (b) high DER penetration.  

4 Modular Cluster-Based Load Model  
 

The input/output 
relationship of the cluster-
based load model is 
presented in Figure 20. Based 
on the application and type 
of results, different modules 
are activated. The model can 
operate as a standalone or as 
an integrated part to feed 
other applications within a 
complete system. The 
demand-generation 
functions are flexible and can 
be updated to accommodate 
other existing load models. It 
is also can be integrated in 
the ecosystem for business 
or engineering applications.     

 

Figure 20: Modular representation of input/output relation 

Figure 21 shows a conceptual representation of the data requirements for a component load model. The 

total system load model component (demand, generation, storage, engagement, and behavior) 

composition is continuously changing. Each cluster/sub-cluster has a different composition that should be 

aggregated or disaggregated based on the modelling level and application (steady-state and dynamic).   

 



Hence, the load model data 
should be comprehensive in 
order to represent the effect 
of the cluster’s components 
on the load profile. While the 
size of the data is large at the 
substation and feeder level, it 
is manageable at the 
cluster/sub-cluster level. 
 
 
The aggregated load is 
decomposed into a set of 
load components of different 
load classes. The model 
parameters are derived for 
each component localized at 
a certain building/class-type 
in terms of fractions of load 
composition. All the 
composite load parameters 
with sample values are listed 
in Table A4. The impact of 
season, climate zone, time of 
day, DERs/ESSs, consumer 
behavior and engagement 
are considered.     

 

Figure 21: Conceptual representation of data requirement for component load 

model. 

5 Other Models with Similar Objectives 
 

5.1 Available Models 
Load modeling is a challenging task due to the large number of diverse load components, the lack of 

precise load composition information, and the stochastic, time-varying, weather-dependent and 

consumer behavior-dependent nature. Different load models are reported in the literature and they 

primarily fall into two main categories: measurement-based (Numerical – load characteristics) or 

component-based (Analytical – physical-based modeling) [12, 25-27]. Both measurement-based and 

component-based models aim to develop accurate load modelling during static and dynamic operations.  

 
Among the static models is the ZIP model, which represents the relationship between the voltage 
magnitude and power in a polynomial or exponential equation that combines constant impedance (Z), 
current (I), and power (P) components. Other models include the impact of frequency to develop voltage 
and frequency dependent models [12, 13, 19, 25-27]. In the dynamic models, active and reactive power 
is represented as a function of past and present voltage magnitude and frequency [12, 13, 19, 25-27]. 
These models are used to represent the power responses to step disturbances of the bus voltage and 
frequency variations. They are commonly employed to represent loads that slowly recover over a period 



of time ranging from several seconds to tens of minutes. The ZIP model and induction motor model (IM), 
exponential recovery load model (ERL), Siemens PTI PSS/E Complex load model (CLOD) and Western 
Electricity Coordinating Council (WECC) CLM have been developed to model power system loads, with an 
emphasis on the dynamic behavior of the loads [12, 13, 19, 15-27]. In general, WECC load models focus 
on the component-based approach, while EPRI-developed hybrid approaches integrate measurement- 
and component-based load models. 
 

The integration of renewable DERs/ESSs and the implementation of demand-side management (demand 

response and energy efficiency programs) as well as the development of a resilient system prompted by 

current and anticipated severe changes in climate conditions highlights the need for more detailed 

modeling of the loads. This need is emphasized in active distribution networks (ADN) with a significant 

amount of DERs/ESSs, high penetration of EVs, and controllable loads that allow small-scale systems 

(microgrids) to operate in either grid-connected or islanded modes. 

 

Intensive research in the literature has focused on providing aggregated models for the entire network 

using black-box [13-15] and grey-box [15-18] approaches. A mathematical relationship is developed to 

relate the input to the output without considering any physical structure. Another area of research 

focuses on modelling the static and dynamic behavior of directly coupled and inverter-coupled DERs [13, 

15, 17, 18]. However, the lack of inherent machine dynamics (inertia characteristics for inverter-coupled 

DERs) and control dynamics of the power electronic devices present a challenging task for dynamic 

modelling. Several studies focus on developing a dynamic circuit model for fuel cells and battery energy 

storage systems (BESS) [12]. 

 

5.2 Comparison with Other Models with Similar Objectives: 
Compared with other models with similar objectives, this project has the following aims:  

1. We intend to develop a load model that considers the stochastic nature of conventional load data, 

DER/ESS, class type, system components, climate zones, season, customer engagement and behavior, 

and business opportunities. The developed cluster’s load model could be presented as a probability 

density function, maximum values, or average values of load profiles based on steady-state or 

dynamic engineering applications as well as other business opportunities inside or outside the energy 

market.  

 

2. The load is modelled at different levels and not only as an aggregate model at the substation bus. 

While the current design of the grid makes it difficult to decarbonize the power sector, even as new 

renewable generation is added, the cluster-based modelling supports the development of a resilient 

system. Cluster-based modelling allows the stochastic nature of DERs/ESSs/EVs to be balanced with 

each cluster’s load for different periods of time, seasons or climate zones, hence enabling the de-

carbonization of the power sector. Multi-level load modelling facilitates the development of a time-

synchronization map of demand/generation relationship during different operation conditions within 

different clusters. This helps build a demand/generation survivability time duration relationship for 

control/protection actions within a resilient system. It also permits scalability that allows multiple 

marketplaces to be established and grow in parallel. 



 

3. Understanding the demand/generation relationship at a cluster level as well as their dynamic 

response promotes business opportunities that support the energy market to develop a resilient and 

sustainable community. It reduces barriers and facilitates the optimal coupling of electric 

demand/generation relationship with other participant within the ADN  in order to assess, generate, 

store, trade, and utilize energy efficiently. It also encourages cluster-owner (and third-party) 

investment to develop new business cases. This includes investing in the required technologies or 

upgrading DER/ESS deployment for developing self-adequate, self-sufficient, standalone, 

decarbonized, secure and resilient clusters at the lowest cost and highest reliability. 

 

4. The developed model is customer behavior-driven, demand response-enabled, and consumer 

engagement-motivated. The cluster-based load model links the technical domains to the services that 

consumers and third parties can provide to one another and to the electric power system. The 

modelling problem is partitioned from the end-user load to cluster level and then up to the feeder 

and substation levels. This gradual modelling provides opportunities to motivate end-user and 

aggregator participation in a wide range of opportunities, from trans-active energy and asset 

management at the end-user level to energy market participation and storage system investment at 

the sub-cluster/cluster/system level. 

 

5. This load model seeks to pinpoint the main characteristics of modern loads and their emerging 

technologies, considering the full potential of an Active Distribution Networks in an open market that 

supports customer engagement and choice. Within each cluster, the generated energy is distinct, 

whether it is immediately consumed or stored for future work. This distinction allows consumption 

priority with assigning value (critical loads) within a resilient system. In addition, this comprehensive 

understanding of consumed and stored energy within the multi-level load model brings up-to-date 

system load/generation/storage relationships for policy-makers, energy regulators, and standard-

developer organizations. 

 

6. The model is flexible in nature and harmonized with the electricity market. It supports flexibility in 

electricity supply and demand, and considers the dynamic and steady-state stochastic nature of 

demand/generation response. Furthermore, it supports end-user and aggregator engagement and 

provides a means to achieve a fully decentralized operation with peer-to-peer trading partners at the 

core of an expanding ecosystem. It can be utilized as a standalone or integrated with other modules 

to provide different inputs for power and energy system programs (dynamic or steady state) for 

wholesale market, service providers and DSO/IESO applications such as those listed in Table 16.  

 

 

 

 



Table 15: Samples of Standalone and Integrated Application of Load Model 

Applications 
Single  

End-Use 
Industrial 

Plant 
Critical 
Load 

Cluster 
Load 

Feeder 
Load 

S/S 
Load 

Transactive Energy Market * * * * * * 
Asset Management * * * * * * 

Energy Efficiency/Demand 
Response * * * * * * 

Volt/VAr Control & Power 
Quality * * * * * * 

Optimal Reconfiguration    * * * 
Contingency Analysis (DS)    * * * 

Switch Order Management    * * * 
Dispatcher Training Simulator  *  * * * 

Resiliency & Reliability * * * * * * 
Load/DER/ESS Forecasting  *  * * * 
Day Ahead & Hour Ahead  * * * * * 

Peak-Load Shaving, Load Shifting  *  * * * 
Renewable Optimization * * * * * * 

Load-Generation Imbalance * * * * * * 
Frequency Regulation  *  * * * 

Ancillary Services * * * * * * 
First-Swing & Small-Signal  *  * * * 

Synchronizing Power & Stability  *  * * * 
Cold-Load Pickup  *  * * * 

Dynamic Overvoltages    * * * 
 

5.3 Model limitations 
 

The size of the data required for accurate modelling is an essential challenge in developing the model. The 
input data changes according to different factors, either direct or indirect. Some of these factors change 
with time, region, and load class type and require continuous updating until saturated. Other factors are 
indirect and depend on customer engagement, customer behavior, and implemented policies and 
standards. These changes require continuous monitoring and updating to match different applications.       
 

 

5.4 Policies and Current Model 

 
Government policies and regulations play a major role in promoting clean energy growth and resilient 

and sustainable communities. Due to the nature of these technologies, policies, standards and energy 

markets are in continuous evolution to adopt system changes and new technology deployments. These 

policies aim to establish carbon-free resilient networks.  



Load models such as the one presented in this proposal will help policy-makers and regulating authorities 

to implement a time plan for developing new policies that facilitate new opportunities for customers, 

communities, and third-party engagement. 

The detailed and comprehensive models for loads, generations and stored energy resources make the up-

to-date system component relationships readily available for policy-makers, energy regulators and 

standard-developer organizations to define strategies and approaches that will lead to least-cost 

implementation for distribution upgrades and replacements for conventional utility investments.  

In the following sections, a brief summary on the benefits and applications of the proposed load model to 

policy-makers is outlined:   

Government:  

 The model will assist government and policy-makers to determine the best energy mix strategy 

for the country.  

 The model will assist government and policy-makers to determine the impact of greenhouse gas 

emission reduction on the electricity sector.  

 The model will assist government and policy-makers to set the guidelines for improving energy 

efficiency in the country.  

 The model will assist government and policy-makers to determine the best energy market 

strategies and rules.  

 The model will assist government and policy-makers to regulate the role of the electric energy 

storage in the electric power systems.  

 The model will assist government and policy-makers to regulate the effect of electric vehicles on 

the electric energy system in the country.   

Utilities: 

 The model will support utilities to establish proper policies for resource planning for generation, 

transmission and distribution.  

 The model will enable utilities to design policies for operation incentives based on detailed and 

accurate cost-of-service.   

 The model will provide utilities with the proper tool to design suitable demand management 

measures in order to delay building new infrastructures.  

 The model will empower utilities to accurately monitor their reliability indices and trends.  

 The model will assist utilities to determine with great certainty the best penetration levels of 

renewable energy resources on their systems.  

Customers: 

 The model will enhance customer choices and opportunities.  

 The model will help track customer behavior changes and their impact on electricity consumption.  

 The model will promote customer choice for adopting greenhouse gas emission reduction 

technologies. 



 
 

6 Possible Future Studies 

6.1 Dynamic nature of a cluster-based model under voltage-transients, voltage oscillations, and 

frequency oscillations. 

6.2 Develop an on-line numerical-analytical integrated model. 

6.3 Investigate the dynamic nature of cluster-based load models in reference to the IEEE std. 1547 

(2018).    

6.4 The indirect impact of cluster customer engagement, customer behavior, policies and standards 

on the cluster’s demand/generation relationship. 

6.5 Utilizing the UW power and energy labs for developing an integrated dynamic model for 

DERs/ESSs/Demand. 
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Appendix A: 

 

Table A1: Samples of End-Use Components in Commercial Building 
 

 
 
 

Table A2: Samples of Load Components in Commercial Sector (Sub-cluster) 
 

 
 

Table A3: Samples of Sector-Demand Breakdown (Cluster) 
 

 
 

 

 

 

 

 

 

Building Type End Use Electronic Motor-A Motor-B Motor-C Motor-D ZIP (Ip) ZIP (Iq) ZIP Zp ZIP Zq

Heating 0.7 0.2 0.1 0.02

Cooling 1

Vent 0.3 0.7

Water Heather 1 0.15

Cooking 0.2 0.2 0.6

Refrigeration 0.1 0.8 0.1

Exterior Lighting 1 -0.36 0.06

Interior Lighting 1 -0.36 0.06

Office Equipment 1

Miscellaneous 0.5 0.5

Process 0.5 0.25 0.25

Motors 0.3 0.4 0.3

Air Compression 1

La
rg

e
 

O
ff

ic
e

End Use Sector Class Electronic Motor-A Motor-B Motor-C Motor-D ZIP (I) ZIP (Z) DER (PV) DER (Wind)

150 Air Compression All commercial classes 0 1 0 0 0 0 0 1 0.1

45 All Other End Uses - COM Healthcare 0.2 0 0 0 0 0 0.8 0 1

70 Cooking All commercial classes 0.1 0 0.05 0 0 0 0.85 1 0.1

100 Elevator drives and hydraulic pumps All commercial classes 0 0 0 1 0 0 0 1 0.1

55 Lighting - CFL/Linear Fluorescent All commercial classes 0 0 0 0 0 1 0 1 0.1

45 Lighting - HID Interior All commercial classes 0 0 0 0 0 0 1 1 0.1

35 Lighting - Incandescent All commercial classes 0 0 0 0 0 0 1 1 0.1

25 Lighting - Other All commercial classes 0 0 0 0 0 0 1 1 0.1

25 Office Equipment All commercial classes 1 0 0 0 0 0 0 1 0.1

50 Refrigeration Lodging 0.1 0.4 0 0 0.5 0 0 0 1

25 Refrigeration Healthcare 0.2 0.7 0 0 0.1 0 0 0 1

55 Refrigeration All commercial classes 0.1 0.8 0 0 0.1 0 0 1 0.1

40 Space Cooling - Single Phase All commercial classes 0 0 0 0 1 0 0 1 0.1

50 Space Cooling - Split Phase All commercial classes 0 0 0 0 1 0 0 1 0.1

50 Space Cooling - Three Phase All commercial classes 0.15 0.85 0 0 0 0 0 1 0.1

200 Space Heating Healthcare 0 0.75 0 0 0.15 0 0.1 0 1

250 Space Heating All commercial classes 0 0.7 0 0 0.2 0 0.1 1 0.1

35 Ventilation All commercial classes 0.3 0 0.7 0 0 0 0 1 0.1

35 Water Heating All commercial classes 0 0 0 0 0 0 1 1 0.1

Historical Rated 

phase Power (kW)

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8

Electronics 18 16 14 17 16 14 15 16

Motor A 14 18 15 15 16 15 17 16

Motor B 12 12 13 12 12 13 11 12

Motor C 6 7 8 9 8 7 10 7

Motor D 25 23 25 19 18 26 19 23

Constant Current 12 12 10 12 13 11 12 12

Constant Impedance 13 13 14 17 17 14 16 14

All Sectors %



Table A4: Time of Use 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hour P.E Motor A Motor B Motor C Motor D Static (Cur) Static (RES) DER (PV) DER (Wind)

1 0.15 0.122 0.080 0.024 0.101 0.025 0.36 0 0.5

2 0.157 0.131 0.087 0.017 0.11 0.02 0.32 0 0.4

3 0.161 0.134 0.089 0.016 0.113 0.015 0.3 0 0.5

4 0.162 0.135 0.092 0.017 0.109 0.02 0.285 0 0.55

5 0.16 0.131 0.093 0.02 0.098 0.0225 0.28 0 0.35

6 0.162 0.119 0.098 0.026 0.082 0.025 0.32 0 0.25

7 0.149 0.103 0.091 0.033 0.062 0.03 0.37 0.1 0.2

8 0.164 0.092 0.082 0.037 0.05 0.035 0.4 0.2 0.2

9 0.166 0.095 0.082 0.042 0.047 0.04 0.39 0.35 0.15

10 0.167 0.103 0.081 0.048 0.045 0.045 0.385 0.65 0.1

11 0.169 0.111 0.081 0.051 0.045 0.05 0.38 0.75 0.1

12 0.171 0.123 0.083 0.052 0.045 0.055 0.36 0.65 0.1

13 0.171 0.130 0.087 0.051 0.052 0.05 0.34 0.6 0.1

14 0.168 0.133 0.093 0.048 0.078 0.045 0.31 0.75 0.15

15 0.173 0.134 0.098 0.045 0.098 0.0425 0.29 0.45 0.15

16 0.168 0.132 0.102 0.043 0.113 0.0415 0.29 0.35 0.2

17 0.169 0.124 0.100 0.041 0.119 0.04 0.3 0.15 0.25

18 0.184 0.102 0.092 0.037 0.118 0.0385 0.34 0.1 0.45

19 0.189 0.085 0.085 0.036 0.121 0.035 0.36 0 0.3

20 0.194 0.080 0.075 0.038 0.108 0.0375 0.38 0 0.4

21 0.196 0.075 0.065 0.04 0.084 0.039 0.42 0 0.45

22 0.19 0.074 0.052 0.042 0.055 0.04 0.47 0 0.35

23 0.175 0.085 0.060 0.037 0.07 0.035 0.47 0 0.45

24 0.16 0.100 0.065 0.03 0.085 0.03 0.42 0 0.55



 

Table A5: List of WECC Composite Load Model Parameters with Example Values [REF] 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bss 0 Fel 0.167 FmB 0.167 FmC 0.167 FmD 0.167

Rfdr 0.04 Pfel 1 MtypB 3 MtypC 3 MtypD 1

Xfdr 0.05 Vd1 0.75 LFmB 0.8 LFmC 0.8 LFmD 1

Fb 0.75 Vd2 0.65 RsB 0.03 RsC 0.03 CompPFD 0.97

Xxf 0.08 Frcel 0.25 LsB 1.8 LsC 1.8 VstallD 0.6

Tfixhs 1 LpB 0.16 LpC 0.16 RstallD 0.1

Tfixls 1 FmA 0.167 LppB 0.12 LppC 0.12 XstallD 0.1

LTC 1 MtypA 3 TpoB 0.1 TpoC 0.1 TstallD 0.02

Tmin 0.9 LFmA 0.7 TppoB 0.0026 TppoC 0.0026 FrstD 0

Tmax 1.1 RsA 0.04 HB 1 HC 0.1 VrstD 0.9

step 0.00625 LsA 1.8 EtrqB 2 EtrqC 2 TrstD 0.4

Vmin 1 LpA 0.1 Vtr1B 0.5 Vtr1C 0.5 FuvrD 0.17

Vmax 1.02 LppA 0.083 Ttr1B 0.02 Ttr1C 0.02 Vtr1D 0.65

Tdel 30 TpoA 0.092 Ftr1B 0.2 Ftr1C 0.2 Ttr1D 0.02

Tdelstep 5 TppoA 0.002 Vrc1B 0.65 Vrc1C 0.65 Vtr2D 0.9

Rcmp 0 HA 0.05 Trc1B 0.6 Trc1C 0.6 Ttr2D 5

Xcmp 0 EtrqA 0 Vtr2B 0.7 Vtr2C 0.7 Vc1offD 0.4

Vtr1A 0.75 Ttr2B 0.02 Ttr2C 0.02 Vc2offD 0.4

Pfs -0.99 Ttr1A 1 Ftr2B 0.3 Ftr2C 0.3 Vc1onD 0.45

P1e 2 Ftr1A 0.2 Vrc2B 0.85 Vrc2C 0.85 Vc2onD 0.45

P1c 0.54546 Vrc1A 0.9 Trc2B 1 Trc2C 1 TthD 30

P2e 1 Trc1A 1 Th1tD 0.3

P2c 0.45454 Vtr2A 0.5 Th2tD 2.05

Pfrq -1 Ttr2A 0.02 TvD 0.025

Q1e 2 Ftr2A 0.47

Q1c -0.5 Vrc2A 0.639

Q2e 1 Trc2A 0.73

Q2c 1.5

Qfrq -1

MBase 0

Motor A

Static Load

Feeder Electronic Load Motor B Motor C Motor D



Appendix B: 
QQ plot: This plot shows the relation between the data and the fitted model. The ideal scenario when the 
data matches the model and therefore the ideal Q-Q plot is a straight line with a 45⁰ slope. 
 

The Q-Q plots for wind models based on Johnson SB PDF are shown below. It is clear that the error 
between the model and the real data is very small.    
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The Q-Q plot when using Weibull to model wind power: 
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It is clear from the Q-Q plots for the Weibull model that there is large mismatch between the model and 
the actual wind data. 
  



Appendix C: Mapping the project format to the energy modelling initiative format  
 

Energy Modelling Initiative  
(Project Format) 

A Cluster-Based Load Model for a Resilient and 
Sustainable Community 
(Project Format) 

6. The Model (10 pages) 2.           Model Development: Pages (7-19) 

a.       Its nature / type of results 
2.1         Model nature and cluster development 
2.2         Analytical-based model 
2.4         Probabilistic-based model 

b.       Its strengths and limitations 5.3         Model limitations Page (32) 

c.       How it compares with other models 
with similar objectives 

5.2        Comparisons with other models with 
similar objectives 

d.       Its place in the energy landscape / 
modelling ecosystem 

4.          Modular Cluster-Based Load Model (Table 
16) 

e.       The state of development & evolution 
roadmap 

5.1     State of development and available models 

 

7. Modelling Results (10 pages) 3.      Modelling Results 

a.       Presentation and interpretation of 
results 

2.3   Type of results in analytical-based model 
2.5   Type of results in probabilistic-based model 

 

8. Model’s Place in the Ecosystem (10 pages)  

a.       Usage (5 pages) 3.          Modelling Results 

i. Concrete examples  

1. Current and past studies 
3.1         Cluster-based probabilistic model 
3.2         Cluster-based load profile model 

2. Possible future studies 
3.3         Dynamic nature of a cluster-based model  
3.4         Mathematical dynamic model parameters 

ii. How can the  model help with policy 
elaboration? 

5.4         Policies and current model 
3.5         Indirect parameters of cluster-based load 
profile 

b. Possible synergy with other models (5 
pages) 

5.          Other Models with Similar Objectives 
Pages (29-30) 

i.  How can we go beyond current results 
(what’s needed)? 

5.2        Comparison with other models with 
similar objectives Page (30) 

ii.            Does it make use of common data 
sets? 

4.          Modular Cluster-Based Load Model (Page 
28) 

iii.            Is it a standalone tool only? 4.          Modular cluster-based load model  
5.2        Comparison with other models with 
similar objectives Page (30) 
5.4       Policies and current model Page(32) 

iv.            If not, has it soft or hard coupling? 

v.            Does it feed on other models’ outputs? 

vi.            Can it produce inputs for others? 

 


