
Energy Modelling Initiative – Bringing the Tools to Support Canada's Energy Transition 
Initiative de modélisation énergétique – Outiller le Canada pour réussir la transition 

 

www.emi-ime.ca  1 

 
 

Project Report 
 

Smart Microgrid Solutions to 
Reducing Fossil Fuels Dependence 

in Canada’s Rural and Remote 
Communities  

 
by 

 
UNB Emera & NB Power Research Centre  

for Smart Grid Technologies  
 

 
                           

November 2019 
 
 

Bo Cao 
15 Dineen Dr., H105 Head Hall 
University of New Brunswick 

Fredericton, NB, E3B 5A3 



Energy Modelling Initiative – Bringing the Tools to Support Canada's Energy Transition 
Initiative de modélisation énergétique – Outiller le Canada pour réussir la transition 

 

www.emi-ime.ca  2 

 

Executive Summary 
To combat climate change and achieve deep decarbonization of the Canadian economy, new and 
innovative modelling approaches are required for policy makers and stakeholders to accelerate 
electrification of Canada’s energy systems. With this incentive, the University of New Brunswick (UNB) is 
supported by Natural Resources Canada (NRCan) energy modelling initiative (EMI) funding to conduct a 
project on smart microgrid solutions to reducing diesel reliance in Canada’s rural and remote communities 
using a variety of renewable energy resources (DERs). The main objectives of this project are: 

Ø To develop a strategic framework of smart microgrid planning and design for rural and remote 
communities in Canada; 

Ø To study the DER models which primarily include wind, solar photovoltaic (PV), controllable loads, 
and battery energy storage systems; 

Ø To establish a decision-making model to help choose an optimal microgrid solution taking account 
of multiple factors which may affect the success of the application. 

 
The purpose of modeling DERs is to better understand and determine the contribution of these individual 
components to the community-scale microgrid design taking both dispatching capacity and cost 
difference into consideration. The per unit (p.u.) generation/load profiles of each DER can be obtained 
either from direct data import or through simulation models developed by the UNB team. Combined with 
the annual load profile of the investigated community, various combinations of available DERs can be 
evaluated to meet the requirement of the local electric power system. An Analytica Hierarchy Process 
(AHP) based decision-making model is then designed to help system planners to choose the optimal 
microgrid solution based on not only environmental benefits, technique challenges and cost budgets but 
also consideration for practical limitations, such as social acceptability. 
 
The smart microgrid design framework proposed in this project enables to bridge the gap between a 
government initiative to help reduce diesel energy in rural and remote communities and in-depth 
knowledge about benefits, risks, limitation, and costs of smart microgrid implementation in practice.  A 
Python-based microgrid design application has been developed by the UNB team integrated with 
proposed models which can be used as the first version of a public tool for microgrid design and planning 
for Canada’s rural and remote communities. 
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1. Introduction 
Even though considerable effort has been made to promote rural electrification in the past decades, there 
are still approximately 260 remote and northern communities and industrial sites across Canada that lack 
access to the national power grid. The majority of these communities rely on diesel for electricity 
generation and heat, which is a well-known reliable but costly, low efficiency and non-eco-friendly energy 
source. The application of smart microgrids gaining in popularity presents an opportunity to overcome 
the dependence on diesel in these communities due to their adaptability and flexible expandability. Fed 
by a variety of distributed energy resources (DERs), renewable energy integrated microgrids enable to 
provide a clean, efficient, reliable and affordable solution for supplying energy to off- and weak-grid 
communities.  
 
The objectives of of this project are to develop a generic framework for the microgrid planning and design 
using the worst-case scenario analysis to achieve 100% renewable energy for heating, electricity 
generation and transportation in off grid communities, and to establish an evaluation model to determine 
the optimal combination of available DERs in a microgrid considering the minimization of capital and 
operational costs subject to reliability constraints as well as practical limitations specific to the 
investigated community. The remainder of this report is organized as follows: Section 2 details the 
simulation models of community load profiles and typical DERs which include solar photovoltaic (PV), 
controllable loads, and battery energy storage systems. Section 3 proposes an approach adapted to 
optimize microgrid solutions and a strategic framework of the microgrid planning and design for off-grid 
rural and remote communities. The development of a Python-based microgrid design tool has been 
introduced in Section 4 with a case study. And the main findings and recommendations for policy makers 
can be found in Section 5. 

2. Modelling of Microgrid Components 
The components within microgrids form a wide variety. The electric power systems in rural and remote 
areas are normally off-grid and use diesel as their main power source. The power network characterized 
by low population density. A small number of homes is facing a relatively high number of farms dispersed 
over a large area, characterized by long low-voltage transmission lines in the form of overhead lines. The 
vast territory of meadows and arable land offers ideal conditions for wind turbines. And large roof areas 
also make PV systems available. Furthermore, battery energy storage systems and controllable residential 
thermostatically controlled loads (TCLs) such as domestic electric water heaters (DEWHs), electric thermal 
storages (ETSs) can be used as an energy buffer to balance the demand and load of the community as well 
as act against abnormal operation of the electric power system. Thus, the models of wind, solar, TCLs and 
batteries are presented in this section as the major DERs of a microgrid for rural and remote communities. 
In addition, a model employed to simulate the electrical load profiles of communities is also proposed 
using transfer learning technologies. 
 
2.1 Wind power production model 
Wind is one of the most promising renewable energy sources. Wind turbines convert kinetic energy from 
wind into electrical energy. The primary benefits of wind power over diesel generation are there are no 
fuel costs to operate them, and they have very little environmental impact [1]. In addition, some general 
drawbacks to wind generation such as not the most profitable use of the land and site selections normally 
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far from cities with few already-proposed transmission lines can be significantly ameliorated in rural and 
remote areas, that makes wind energy become one of the most prevalent DERs in a microgrid. 
 
In order to estimate the potential contribution of wind energy to a microgrid, the per unit (p.u.) power 
production profile of selected wind turbines should be prepared taking account of both wind turbine’s 
characteristics and weather conditions in the investigated communities. However, it is hard in practical. 
The power curves from wind turbine manufactures are normally used to represent the relationship 
between wind power production and wind speed, however, as the manufacturers’ curves are created 
under standard conditions, they cannot represent the realistic characteristic of the wind turbine. Fig. 2.1 
gives an example of difference between the manufacture’s power curve and the one extracted from a 
three-year period of telemetry data of an investigated wind farm in New Brunswick (NB). 
 

 
Fig. 2.1 Measured power curve for an investigated wind farm in NB. Blue dashed line corresponds to the 

manufacturer’s power transfer curve. Green line is the average power curve calculated from the data. 
Boxplots allow to identify the maximum, minimum power curves and data outliers (blue circles) 

 
To accurately characterize the relationship between wind speed and wind power production, a non-linear 
auto-regressive exogenous (NARX) power transfer model has been developed from a previous study 
carried by the UNB team on development of wind power production forecasting algorithm, shown as Fig. 
2.2. A NARX network is a powerful class of dynamical models that have demonstrated its capacity to model 
nonlinear time series. In our approach, the inputs are both the wind speed and the last output power of 
the turbine, which acts as the exogenous input. The number of neurons in the hidden layer is set to five 
and the Levenberg-Marquardt method is employed as the training algorithm. The idea behind the use of 
an exogenous input here is to account for the inertia of the wind turbine that cannot change abruptly with 
sudden changes in the wind speed. 
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Fig. 2.2 UNB developed NARX-based power transfer model 

 
However, the proposed UNB developed NARX-based power transfer model requires a considerable 
amount of historical data for training the network which is normally not available for a specific wind 
turbine. In order to solve this problem, transfer learning technologies have been implemented in this 
research to build accurate wind power production models of investigated wind turbines with limited 
historical data through starting from knowledge that has been learned when modeling for an existing wind 
turbine. As shown in Fig. 2.3, a deep neural network (DNN) is developed to establish a relationship 
function between wind power production and manufacture power curve-based output using Keras library 
in Python [2]. And this pre-trained DNN can be also used to simulate the generation profiles of any other 
wind turbines once their manufactures’ power curves are available. 
 

 
Fig. 2.3 Transfer learning architecture with a pre-trained power transfer model 
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Here, the wind speed data is collected from Canadian Weather Energy and Engineering Datasets (CWEEDs) 
with an hourly time resolution. CWEEDS provides statistical weather records from 492 Canadian locations 
with at least 10 years of data for the period between 1998 and 2014 [3]. In order to estimate wind speed 
values for a location not included in CWEEDS, a spatial interpolation method called “inverse distance 
weighting (IDW)” is implemented by using a linear combination of the data from the CWEEDS locations 
surrounding the study areas. IDW assumes that the wind speed indicates a local influence that diminishes 
with distance, which can be expressed as 
 
𝑢"#𝑥%& = 	∑ 𝑤+#𝑑+,%&𝑢(𝑥+)0

+12 ∑ 𝑤+#𝑑+,%&0
+123                  (2.1) 

 
where	𝑢"#𝑥%& is the estimated variable at the wind turbine site, 𝑢(𝑥+) is the corresponding variable at the 
neighbor CWEEDS locations, and 𝑤+(𝑑+,%) is the weight value determined by the distance between the 
investigated area and surrounding CWEEDS locations. But if the second nearest neighbor is more than 
three times further than the nearest one, the wind speed records from the nearest location will be used 
for the investigated wind turbine. 
 
2.2 PV generation model 
Solar PV is another mature renewable energy source as an alternative to the diesel generation. Like wind 
turbines, there is no negative impact made by PV panels on environment as well as no significant 
operation and maintenance costs. The rural and remote communities normally have potential for large-
scale distributed PV system installation based on rich available land resources, but the performance of 
these PV systems is geographical-oriented, highly dependent on the local solar resources. Thus, the PV 
generation can be modelled by a linear power source based on the ambient temperature and the 
irradiance level [4]. Assuming that every PV panel can work at its maximum power point when a proper 
maximum power point tracking (MPPT) is applied, the power production of a PV system at time t can be 
expressed as 
 
𝑃56,7 = 𝑃56_9:% ×

<=
2>>>

× [1 − 𝛾 × #𝑇56,7 − 25&]                (2.2) 
 
where 𝑃56,7 is the output power of the PV system at t, 𝑃56_9:% is the capacity of the PV system, 𝐼7 is the 
irradiance at t (𝑊/𝑚K), 𝛾 is the power temperature coefficient which equals to 0.043%/°C here, and 
𝑇56,7 is the temperature of PV panels at t.  
 
Fig. 2.4 gives an example of a simulated PV generation profile for seven days produced with inputs of 
ambient temperature and irradiation. Both information could also be obtained from CWEEDS using the 
average hourly measurements of dry bulb temperature (DBT) and global horizontal irradiance (GHI), 
respectively. Here, the DBT, usually referred to as "air temperature", is the air property that is most 
commonly used. When people refer to the temperature of the air, they are normally referring to the DBT. 
And the GHI which is used as 𝐼7 for PV generation estimation. It can be expressed by the sum of direct and 
diffuse radiation as 
 
𝐺𝐻𝐼 = 𝐷𝐻𝐼 + 𝐷𝑁𝐼 × cos(𝑍)                  (2.3) 
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where DHI represents diffuse horizon irradiance, DNI represents direct normal irradiance and Z is the solar 
zenith angle. 
 

 
Fig. 2.4 An example of a 7-day simulated PV generation profile 

 
2.3 Battery model  
According to the wind and PV generation models discussed above, it is clear that the intermittency is the 
main challenge for rural electrification with renewable energy sources. In a microgrid, like in any other 
electric power systems, generation and consumption must be tuned permanently to each other. If the 
power production is based mainly or partly on renewable energy sources, the balancing of these sources 
by an energy storage system can take place. 
 
Depending on the design objectives, the appropriate energy storage technology can be determined for 
the planned microgrid.  A battery energy storage system is normally selected as stationary storage within 
renewable energy integrated microgrids due to its relatively low cost, technical maturity, market 
availability and reliability [5]. In modeling, the state of charge (SOC) and capacity (𝐶V:77WXY) are two of the 
key parameters for battery storage system operation. The most common method for state of charge 
estimation is coulomb counting based on the introduction of the charging/discharging current [6], which 
can be described by 
 
𝑆𝑂𝐶7% = 𝑆𝑂𝐶7]∆_

% + 𝜂 × 2>>
9ab==cde

∫ 𝑐ℎ𝑎𝑟𝑔𝑒(𝜏)𝑑𝜏7
7]∆_ − 2>>

9ab==cde
∫ 𝑑𝑖𝑠(𝜏)𝑑𝜏7
7]∆_ , 𝑤ℎ𝑒𝑛	𝑆𝑂𝐶7% ≤ 1     (2.4)  

 
where 𝑆𝑂𝐶7% is SOC of the battery expressed in percentages, ∆𝑇 is the sampling period, 𝜂 is the charging 
efficiency, 𝐶V:77WXY  is the battery capacity (kWh), and 𝑐ℎ𝑎𝑟𝑔𝑒(𝜏)  and 𝑑𝑖𝑠(𝜏)  are the charging and 
discharging power (kW), respectively. 
 
As the battery is connected via an inverter to the microgrid, it can be assumed that there is no delay 
between the load demand and infeed from the storage. Thus, the capacity of the battery becomes the 
main concern of the planner which can be determined based on the high-level operational and investment 
objectives and constraints of microgrid design via an optimization function detailed in Section 3. 
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2.4 TCL model 
Besides the battery energy storage systems, load control also shows considerable dispatch potential to 
help address the intermittency, thereby supporting the balance and reliability of the local electric power 
system. In rural and remote communities, conventional generation dispatch using diesel generators is 
subject to physical constraints, operating expenses and particularly environmental concerns [7], while 
load control can alleviate these limitations by managing dispatchable loads on demand side. Typical 
examples of dispatchable loads are thermostatically controlled loads (TCLs) that have inherent operation 
flexibility. Such flexibility results from the energy storage capacity that can help “decouple” the electricity 
consumption and thermal energy demand. TCLs which could be used in rural and remote areas include 
many widely used appliances, such as domestic electric water heaters (DEWHs) and electric thermal 
storage units (ETSs). Their wide use means massive “usable” capacity, and therefore the aggregation of a 
large number of controllable TCLs shows great potential for system balancing in a microgrid. In this report, 
a differential equation-based model [8] has been presented to simulate the TCL characteristics, which can 
be formulated as 
 
𝜃+(𝑘 + 1) = 𝑎+𝜃+(𝑘) + (1 − 𝑎+)#𝜃:,+(𝑘) − 𝑚+(𝑘)𝜃t,+& + 𝜖+(𝑘)			 	 	 	 									(2.5) 
 
where 𝜃+(𝑘)	and	𝜃:,+(𝑘)	are the internal and ambient temperature for the ith TCL	at time step	𝑘. 𝑎+	= 
𝑒]y/z9 , with		ℎ being the sampling period, 𝐶	 the thermal capacitance and 𝑅 the thermal resistance of the 
TCL. The parameter 𝜃t,+	is the temperature gain when the ith TCL is ON (𝜃t,+ = 𝑅+𝑃7X:|}, with	𝑃7X:|} being 
the energy transfer rate of the TCL). The term 𝜖+	denotes a random disturbance.  The local control variable 
𝑚+  equals 1 when the ith TCL is ON and 0 when it is OFF. 
 
The power consumption of each TCL in the ON state is 𝑃+ = 𝑃7X:|}/𝐶𝑂𝐹 , where COF represents the 
coefficient of performance. In addition, 𝜃}W7,+	 is the temperature setpoint and 𝛿+	 is the width of the 
temperature hysteresis band. 
 
Load control can be exercised either indirectly or directly. Direct Load Control (DLC) is more 
straightforward and precise than Indirect Load Control (ILC), and more suitable for real-time power 
tracking. This is so because, ILC implicitly influences power consumption behavior through price incentive 
policies without guarantee on real-time tracking performance, while DLC directly regulates load profiles 
to desired shapes via ON/OFF control or setpoint control on individual loads. TCLs automatically turn ON 
and OFF by their intrinsic hysteresis temperature bands, but ON/OFF control of TCLs may override the 
hysteresis bands altering the end use of appliances and possibly disrupting the user’s comfort or safety. 
Such control may also be implemented without changing the setpoints or the hysteresis bands of TCLs 
with less impact on end-user comfort levels.  
 
In this project, a UNB developed bottom-up forecasting with Markov-based error reduction method has 
been implemented for TCL control in a microgrid [9]. This DLC algorithm had been verified to have 
outstanding performance particularly when the aggregation size of TCLs is small.  Fig. 2.5 shows an 
example of the proposed DEWH control using an aggregation of 1000 simulated units. Two DEWH models 
(listed in Table 1) have been used, assigning half units to each model. The simulation considers the 
reference power equal to the 15-minute piecewise capacity provision load request plus the baseline with 
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the control starting at 7:00AM. Fig. 2.5(a) shows the reference power, actual load and baseline load. Fig. 
2.5(b) shows the capacity provision request at each time step and the actual capacity provision. It is clear 
that the DEWHs can track the power reference and provide appropriate response to requests. 
 

TABLE I PARAMETERS OF SIMULATED DEWHS 
Parameters Model I Model II 

Upper limit of water 
temperature 

55℃ 50℃ 

Lower limit of water 
temperature 

50℃ 45℃ 

Volume of water tank 300 L 150 L 
Rated power 6 kW 4.5 kW 

Default house temperature N (20, 9) ℃ N (20, 9) ℃ 
Inlet water temperature 5-15℃ 5-15℃ 

N (20, 9): Normal distribution with the mean of 20 and the variance of 9. 
 

 
(a) 

 
(b) 

Fig. 2.5 Capacity provision using 1000 simulated DEWHs 
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2.5 Community load profile model 
In order to design a microgrid, preparing the electrical load profiles of the investigated community is 
normally the first step in determining the electrical sizing of the energy system. However, this data is often 
non-existent or unreliable, especially when looking into the rural and remote communities. In this project, 
one year of the hourly-averaged electrical load data is preferable for microgrid design and planning. The 
main challenge of simulating the community load profile is estimation of the energy consumption 
behaviour in these diverse communities. As a result, a multilayer perceptron (MLP) neural network model 
has been developed for the load profile construction via a data-driven approach. The electrical 
consumption data from four distinct remote communities across Canada (two in Newfoundland and 
Labrador, one in Quebec and the other one in Nunavut) over a period of at least one year has been 
collected for this study.  
 
The important load profile parameters for modelling in this project include population, temperature 
information, and annual total/average electric energy consumption (MWh/yr), all of which can be found 
in NRCan Remote Communities Energy Database and CWEEDS. Fig. 2.6 shows the architecture of the 
propose MLP, which develops a relationship between basic information of the investigated community 
and hourly-averaged consumption bias for the community load profile simulation.  
 

 
Fig. 2.6 MLP architecture for community load profile simulation model 

 
Fig. 2.7 gives an example to compare the simulated load profile and the actual one based on a community 
located at Cambridge Bay, NU with a yearly eclectic energy consumption of 11929MWh. The population 
of Cambridge Bay, NU is about 1766 [3]. Two global metrics, root mean squared errors (RMSEs) and mean 
absolute percentage errors (MAPEs) have been employed to evaluate the performance. RMSE is a good 
estimator of the accuracy of mean simulated values. Its nonlinear form penalizes larger errors as it 
becomes larger upon the existence of large errors. While MAPE expresses accuracy of the model in a 
percentage term. Both of these can be given as  
 

𝑅𝑀𝑆𝐸 = �2
0
∑ (𝑒+)K0
+12                      (2.6) 
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𝑀𝐴𝑃𝐸	 = 	 2>>
0
∑ |W�|

|Y�|
0
+12                         (2.7) 

 
where 𝑒+  is the error and 𝑦+  is the actual consumption value. Limited by the small training and validation 
datasets collected in this project, the output of the simulation model in this example has a RMSE value of 
269.0kW while reaches 17.0% of MAPE. 
 

 
Fig. 2.7 An example of a simulated load profile for Cambridge Bay, NU 

3. Framework for microgrid design 
The main goal of this project is to develop a comprehensive strategic framework for community-size 
microgrid design and optimization, taking multiple objectives into consideration. The optimal system 
configuration for a rural or remote community normally addresses several requirements, such as 
economic feasibility, renewability assessment, demand management and reliability of the local electric 
power system, etc. In this project, two of the optimization objectives we pursue include the best Return 
on Investment (ROI) with the minimum diesel generation and an achievement of 100% renewable energy 
in the community.  
 
The strategic framework for microgrid design is proposed as a flowchart shown in Fig. 3.1. The flowchart 
consists of three core processes: building generation profile evaluation model, carrying out modelling 
optimization and making a decision using Analytica Hierarchy Process (AHP). The generation profile 
evaluation model is used to collect the p.u. profiles of each available DER via direct data import or 
simulation using proposed DER models taking account of their individual requirements and limitations 
specific to the investigated community. The modelling optimization is carried out using convex 
optimization techniques [10] to provide optimal DER combinations of a microgrid to attain objectives such 
as maximizing the ROI or achieving 100% renewable energy supply. And AHP as one of the most effective 
multi-criteria decision-making (MCDM) methods can be implemented to select the best microgrid 
solutions focusing on both quantitative and qualitative attributes.  
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Fig. 3.1 Flowchart of proposed microgrid design framework 
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3.1 Scenario selection 
Two daily scenarios extracted from a yearly community load profile have been evaluated for determining 
capacities of each available DER to meet the objectives of microgrid design, which include a yearly-
averaged daily load profile and a worst-case daily load profile.   
 
The yearly-averaged load profile is used to estimate the size of renewable generators to have the best 
ROI, particularly focusing on the operation cost. In a microgrid, the main operation cost is usually from 
the diesel generators, hence, minimizing the operation cost is the same word as minimizing the diesel 
emissions. The yearly-averaged daily load profile can be generated by 
 

𝐿:�W,� =
2

0�be�
∑ 𝑙�|
0�be�
|12 , 	𝑘 = 1,2, … , 2                    (3.1) 

 
where 𝐿:�W,� is the average load at the at the kth hour in the daily profile,	𝑙�| is the actual load at the kth 
hour in the nth day, 𝑁�:Y} is the number of days in the yearly load profile dataset. 
 
And the worst-case scenario analysis is motivated to seek for a possible solution to having a 100% 
renewable energy microgrid for rural and remote communities. The worst-case daily load profile then can 
be expressed as 
 
𝐿�:�,� = 𝑚𝑎𝑥

|
(𝑙�|), 𝑛 ∈ [1,2, … ,𝑁�:Y}]                 (3.2) 

 
Fig 3.2 shows the measurement of one-year electrical consumption load for Ramea, NL, a small village 
located on Northwest Island, NL. According to (3.1) and (3.2), two typical daily load profiles of Ramea can 
be obtained as shown in Fig. 3.3, both of which can be used for objectives-oriented optimization in the 
next step. 
 

  
Fig. 3.2 Actual load profile for Ramea, NL 
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Fig. 3.3Typical daily load profiles for Ramea, NL 

 
3.2 Modelling optimization 
The microgrid for a rural and remote community is required to maintain a balance of load and generation, 
which is a prerequisite for further optimizing the combinations of available DERs. Fig. 3.4(a) gives an 
example of a microgrid fed with multiple DERs, where batteries and diesel generators are used to reduce 
the impact of renewable energy intermittency. Fig. 3.4(b) represents load and the sum of DERs. 
 

 
Fig. 3.4 An example of a microgrid integrated with multiple DERs 

 

 

 

(a)

(b)
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Two optimization objectives set in this project are: (1) to minimize the cumulative cost including 
investment and operation cost for N years (Best ROI); (2) to achieve 100% renewable energy supply. 
Accordingly, a two-stage optimization model has been developed for the optimal system configurations 
of microgrid design, which can be described as 

Ø Stage I: to select optimal capacities of wind turbines and PV panels based on typical daily load 
profile analysis introduced in Subsection 3.1. 

Ø Stage II: to optimize the battery size to support the balance of load and generation with a 
minimum investment. 

 
In Stage I, when the objective is to minimize the total cumulative cost, the objective function can be 
formulized as 
 

min
���,��,5�

�,5�
�	
� 2
	0�be�

�𝑐%� ∙ 𝑃�256 ∙ 𝑥%� + 𝑐� ∙ 𝑃�2� ∙ 𝑥�  + 𝛽2 ∙ ∑ �𝑎 ∙ (𝑃�¢)	K + 𝑏 ∙ 𝑃�¢  + 𝛽K ∙K¤
�12

¥∑ (𝑐¦ ∙ 𝑃�¦K¤
�12 )¥§                                                           (3.3) 

 
Subject to  
 

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧

𝑥%�, 	𝑥� ∈ 𝕫
𝑃�256 ∙ 𝑥%� + 𝑃�2� ∙ 𝑥� + 𝑃�¢ + 𝑃�¦ ≥ 𝐿�,			for	∀	𝑘 = 1,2, … , 24		

𝑃�56 ≥ 0
𝑃�� ≥ 0

𝑃�+|¢ < 𝑃�¢ ≤ 𝑃�:�¢

𝑃�+|¦ < 𝑃�¦ ≤ 𝑃�:�¦

∑ 𝑃�¦K¤
�12 ≤ 0

             (3.4) 

 
where  𝑃�256  is the generation profile of a unit PV system, 𝑃�2� is the generation profile of a unit wind 
turbine, 𝑥%� is the number of the unit PV systems, 𝑃�56  is the total PV capacity which equals to (𝑃�256 ∙
𝑥%�),  𝑥� is the number of wind turbines,	𝑃�� is the total wind capacity which equals to (𝑃�2� ∙ 𝑥�), 𝑐%� is 
the capital cost of PV generation ($/kW), 𝑐� is the capital cost of wind turbine generation ($/kW), 𝑐¦ is 
the capital cost of batteries ($/kWh), 𝑃�¢ is the output power of diesel generators in the kth hour, 𝑃�¦ is the 
output power of batteries in the kth hour, 𝑁�:Y} is the expected return period, 𝛽2 is the coefficient that 
weights diesel generation (when looking for solutions for a 100% renewable energy application,	𝛽2=0), 𝛽K 
is the coefficient that weights battery supply, and 𝑎	($/kWh)	K, 𝑏	($/kWh)	, 𝑐  ($/kWh) are the 
coefficients of the diesel generation cost model presented in [11].  
 
In addition, 𝐿� here represents the daily load profile from the selected typical scenario: when optimized 
for the minimum cumulative cost, 𝐿� = 𝐿:�W,�; while the optimization is employed for more renewable 
energy integration, 𝐿� = 𝐿�:�,�. 
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In Stage II, the battery size could be optimized using a net load calculation method that using battery 
energy management system to compensate the difference between load and generation. Thus, the 
objective function can be given by 
 

min	
¸���¹c,5�

�	
º»�
	0
∙ 𝐸¦}+¼W + ∑ [𝑎 ∙ (𝑃�¢)	K + 𝑏 ∙ 𝑃�¢ + 𝑐�]0

�12 ½ ,			for	∀	𝑘 = 1,2, … ,𝑁	            (3.5) 

 
Subject to  
 

¾

𝑃�+|¢ < 𝑃�¢ ≤ 𝑃�:�¢

𝐸¦}+¼W ≥ 0

𝐸¦}+¼W ≤ ¿ max
+∈[2,K,…,0]

∑ #𝐿� − 𝑃� ∙ 𝑥�∗ 	 − 𝑃%� ∙ 𝑥56
∗ &+

�12 ¿
                (3.6) 

 
where * represents the optimal solution, 𝐸¦}+¼W is the battery size (kWh) and 𝑁 is the expected return 
period in hour. 
 
Then, the minimum operation cost can be reached through an optimal quadratic algorithm [12] , which 
can be expressed by 
 
min	
5�
�,5�

�	
	[𝑎 ∙ (𝑃�¢)	K + 𝑏 ∙ 𝑃�¢ + 𝑐	] ,			𝑥%�, 	𝑥� ∈ 𝕫              (3.7) 

 
Subject to 
 

⎩
⎪
⎨

⎪
⎧𝑃�

56 + 𝑃�� + 𝑃�¢ + 𝑃�¦ = 𝐿�,			for	∀	𝑘 = 1,2, … , 24
¥∑ 𝑃�¦+

�12 ¥ ≤ 𝛾 ∙ 𝐸¦}+¼W
𝑃�+|¢ < 𝑃�¢ ≤ 𝑃�:�¢

𝑃�+|56 < 𝑃�56 ≤ 𝑃�:�56

𝑃�+|� < 𝑃�� ≤ 𝑃�:�	�

                (3.8) 

 
Therefore, the total optimal cost can be calculated by 
 
Cost7Ä7:Å∗ = 𝑐%� ∙ 𝑃�256 ∙ 𝑥%�∗ + 𝑐� ∙ 𝑃�2� ∙ 𝑥�∗ + 𝑐¦ ∙ 𝐸¦}+¼W∗ + ∑ [𝑎 ∙ (𝑃�¢∗)	K + 𝑏 ∙ 𝑃�¢∗ + 𝑐�]0

�12         (3.9) 
 
3.3 AHP-based decision-making model 
The optimization discussed in the previous subsection provides optimal combinations of available DERs 
to achieve the microgrid design objectives. However, the selected optimized system configuration may 
not be considered as the best microgrid solution to the investigated community in terms of reducing the 
diesel reliance, as system planners may need to add more specific criteria to evaluate the existing options 
to make a decision. Many factors influence which criteria to use, and how to select criteria is also an 
important part of the decision-making process. Consequently, AHP has been implemented in this project 
to evaluate alternative microgrid solutions taking account of scales of each criterion [13] for making 
improvements to the electricity supply system in rural and remote areas.  
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AHP as one of the most effective and efficient MCDM methods provides a convenient approach to analyse 
decision problems preferred in group decision-making applications, which is capable of guiding the 
decision-makers for achieving the best and optimal judgment for their problem rather than to get “correct” 
answers [14]. The approach of APH is to simplify the MCDM problems by breaking it down into a 
hierarchical system, which allows the decision-makers to integrate the entire range of elements into a 
single analysis, as shown in Fig. 3.5. Here, the elements can relate to any aspect of the presented decision 
problem including criteria, options, or anything that applies to the decision at hand. In addition, AHP helps 
quantify the weight of the appraised criteria in the form numeric basis. The criteria weight of each element 
determines its relative importance with the other elements of the hierarchy. Hence, it facilitates the 
decision-makers to identify and prioritize significant factors. Besides this, the calculation of the 
inconsistency index is another salient feature of AHP. It makes possible for the decision-makers to check 
the consistency of their judgments.  
 

 
 

Fig. 3.5 Architecture of AHP 
 
Applying an AHP-based decision-making model involves the following steps, which are described as: 

Ø Establish the hierarchical structure of AHP: the construction of hierarchy is a top-down process 
and comprises of several levels. The elements of the same hierarchy level must be correlated with 
the other corresponding factors of the structure. The formation of AHP hierarchy normally starts 
from the higher-level goal and subdivides into lower-level decision factors [15]. A four-level AHP 
model including both criteria and sub- criteria has been implemented in this project. 

Ø Determine the goal and criteria used for decision-making: when evaluating potential renewable 
energy integrated microgrid solutions in rural and remote communities, a set of 10 criteria (sub- 
criteria) has been selected as an example and grouped into four broad categories (criteria): 
technical, economic, environmental and social, which is shown on the hierarchy depicted in Fig. 
3.6. 

Ø Determining the Comparison Matrix and the Priority Vector (eigenvector): after the hierarchy has 
been established, the criteria must be evaluated in pairs so as to determine the relative 
importance between them and their relative weight to the global goal. A Comparison Matrix is 
used to measure this relative importance of each criterion represented using the normalized 

Goal

Criterion #1 Criterion #2 Criterion #3 Criterion #N

Option #1 Option #2 Option #3 Option #M
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number scale. The weights can be derived by calculations made using the eigenvector method 
introduced in [13]. 

Ø Check the Consistency Ratio: The measure of “Consistency Ratio” is an important aspect of AHP. 
The optimal decision-making in pairwise comparison is mainly associated with the permissible 
value of consistency ratio. This step acts as a gateway to observe the consistency and 
inconsistency of the decision matrix [15]. 

Ø Synthesize results: the final step starts from the summation of relative values for each set of 
alternatives on all hierarchy levels. These values are combined together to establish the overall 
score or criteria weights of each alternative. And the final priorities are synthesized by aggregating 
the product of local eigenvector and the relative weights of the respective alternative.  
 

 
 

Fig. 3.6 Hierarchy of Criteria for microgrid selection 

4. Application development of microgrid design 
A framework of microgrid design provides value only when policy makers and system planners can use it 
in a manner that is convenient, and have the necessary resources and mechanisms in place that helps 
them to make a decision. Accordingly, a Python-based desktop application has been developed as a toolkit 
for microgrid design and planning. 
 
4.1 Toolkit development 
The proposed “UNB Smart Grid Design Tool for Rural & Remote Communities” is developed based on two 
key parts: the frontend data input & display panel and the backend optimizer design. Both the frontend 
and the backend parts are developed using Python script. The frontend panel is built within 
wxFormBuilder first, which is an open source Python GUI designer application. By using this software, the 
layout of the toolkit frontend panels, button functions, file selection units, display modules and etc. are 
all placed. Once the frontend panel design is completed, all the elements are converted into python script 
using wxFormBuilder with embedded pre-defined functions. These pre-defined functions will be filled 
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with the developed optimizer later on to link the backend code. Fig. 4.1. give an overview of the proposed 
toolkit, followed by a detail description of the functions. This toolkit consists mainly of four sections, which 
include general community information import, DER parameter settings, design optimization and result 
visualization. 
 

 
Fig. 4.1 UNB Smart Grid Design Tool for Rural & Remote Communities 

 
Ø General community information import (shown in Fig. 4.2): this section inputs the basic information 

of the investigated rural or remote community. Specific requirements and limitations are also taken 
into consideration.  

 

 
Fig. 4.2 Overview of general community information import section 

Cumulate Cost Curve

1.

2.

3.
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where, 
Box 1: Input the community location as well as check box to illustrate whether this investigated 
community uses diesel as its main power source or not;  
 
Box 2: Import the electrical load consumption profile of the community using a .csv or .xlsx format or 
simulate the profile via the internal UNB developed model (or other third-party models) when checking 
box; 
 
Box 3. Set the capacity limitations of each of available DERs which comprise wind, PV, Combined Heat and 
Power (CHP) and controllable loads. Checking box will add the selected DER into the optimization process. 
 

Ø  DER parameter settings (shown in Fig. 4.3): this section inputs the parameters and p.u. generation 
profiles of wind turbines and PV panels.  

 

 
Fig. 4.3 Overview of DER parameter settings section 

 
where, 
Box 1: Select the specification of the wind turbines that will be used in the investigated community and 
add the wind turbine p.u. profile to the optimizer. If the actual p.u. prolife is not available, a simulated 
profile can be generated via a selected simulation model; 
 
Box 2. Select the specification of the PV panels that will be used in the investigated community and add 
the PV p.u. profile to the optimizer. If the actual p.u. prolife is not available, a simulated profile can be 
generated via a selected simulation model; 
 
Box 3. Add battery storage into the optimization if the box is checked. 
 

Ø design optimization (shown in Fig. 4.4): this section works together with the backend to optimize 
the microgrid solutions within different design objectives. 

1.

2.

3.
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Fig. 4.4 Overview of design optimization section 

 
where,  
Box 1: Select one of the optimizers to evaluate available microgrid solutions in terms of the DER 
combination, the capacity configurations and the capital price. Currently there are three selectable 
optimizers which are Best ROI Optimizer, 100% Renewable Energy Optimizer, and customized one.  
 
Box 2: List all the available optimization solutions based on the objective set by the optimizer selection. 
 

Ø result visualization (shown in Fig. 4.5): this section displays the cumulate cost curves for every 
optimized solution. 

 

 
Fig. 4.5 Overview of result visualization section 

1.

2.

Cumulate Cost Curve
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4.2 Case study 
To test and demonstrate the proposed framework, the microgrid design for Ramea Island, NL has been 
selected as a case study. A previous pilot project led by Newfoundland and Labrador Hydro, with funding 
support from the Atlantic Canada Opportunities (ACOA), the Government of Newfoundland and Labrador, 
and from NRCan was commissioned in 2009 with development of a wind-hydrogen-diesel system used for 
reducing the dependence on diesel power. The UNB, Frontier Power System in P.E.I and Memorial 
University were the main technical partners. The updated information of Ramea, NL can be found NRCan 
Remote Communities Energy Database as the initial data collection for the microgrid design, as shown in 
Fig. 4.6, which includes population, coordinates, total fossil fuel generating capacity (kW), diesel price ($/L) 
annual fossil fuel generation (MWh/yr), and etc.  
 

 
Fig. 4.6 Basic information of Remea, NL 

 
When designing a microgrid for Remea using the proposed framework, three scenario studies presented 
in this project have been evaluated, which can be described as  

a) Best ROI microgrid solution 

b) 100% renewable energy supplied microgrid solution 

c) 100% renewable energy supplied microgrid solution with a limitation of the maximum capacity of 
deployed wind generation ( £ 1.5MW) 

Fig. 4.7 shows the simulated yearly p.u. generation profiles of wind and PV using the models presented in 
Section 2. In this case study, an 150kW induction-generator-based wind turbine system is used as the 
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standard wind turbine unit for planning. And a 2kW rooftop PV power station is used as the standard PV 
panel unit. Then, an averaged daily p.u. profile of wind and PV generation can be obtained in a similar way 
developed in (3.1), which is illustrated in Fig. 4.8. The electrical consumption load profile of Remea come 
from the measurement which was shown in Fig. 3.2. However, a 20% margin is left for the design taking 
account of the increasing electricity demand growth. 
 

 

Fig. 4.7 Simulated generation profile of p.u. wind and PV for Remea, NL 
 

 

Fig. 4.7 Averaged daily generation profiles of wind and PV for Ramea, NL 
 

Table II provides the necessary parameters used for this case study. Table III lists the optimized solutions 
to three scenario studies, respectively. Fig. 4.8 gives a screenshot of the operation in scenario b as an 
example to understand how the battery works in a microgrid to compensate the intermittency of 
integrated renewable generation. 
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TABLE II PARAMETERS FOR MICROGRID DESIGN IN REMEA, NL 

PV Capital Cost 𝑐%� 3000 $/kW 𝑎 0.0002484 ($/kWh)K 

Wind Capital Cost 𝑐� 3500 $/kW 𝑏 0.3312 $/kWh 

Battery Capital Cost 𝑐¦ 609 $/kWh 𝑐 0.0156 $/kWh 

𝑃X:7W�256   2KW  𝑃�:�¢  1500 kW 

𝑃X:7W�2�  150 kW 𝑃�+|¢  20 kW 

N 131,400 hrs (15-year) 𝑁�:Y} 5,475 days (15-year) 

 

TABLE III MICROGRID SOLUTIONS TO SCENARIO STUDIES 
Scenario 

Study 
DER                            

Solution 
Wind Turbine 

(kW) 
PV Panel 

(kW) 
Battery 
(kWh) 

Capital 
Investment (k$) 

a Diesel + Wind + PV 600 (150´4) 30 (2´15) 0 $1,875.00 

b Wind + PV + Battery (#1) 1650 (150´11) 30 (2´15) 1293 $6,604.00 

c Wind + PV + Battery (#2) 1500 (150´10) 630 (2´315) 1386 $7,984.00 

 

 

Fig. 4.8 Operation of a microgrid with 100% renewable DERs 
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Fig. 4.9 illustrates the cumulative costs of each microgrid solution listed in Table III during a period of 15 
years. It is clear that the microgrid integrated with renewable DERs can offer not only the environment 
benefits, but also a significant savings of the fuel cost, and the main barrier to deployment of renewable 
electric energy in rural and remote communities is still the up-front cost. In addition, when comparing 
two 100% renewable energy solutions, it is easy to find that adoption of wind turbines in Ramea, NL is 
more efficient and cost-effective than PV panels for energy supply. There is no one-size-fits-all solution to 
microgrid design for all of Canada’s rural and remote communities -- any renewable technology is only 
truly effective when located in an area with appropriate natural resources such as solar or wind. Thus, 
when planning to design a microgrid integrated with renewable energy, the proposed framework 
becomes beneficial due to the help for identifying the optimal DERs through evaluating the different 
system configurations. However, there are still some important factors in microgrid design not included 
in this study, such as ancillary services provided by DLC, maintenance cost of DERs, sensitivity analysis, 
connection issues with a national grid and etc., all of which will be evaluated in the future research. 
 

 

Fig. 4.8 Cumulative cost curves for microgrid solutions 

5. Conclusions and Recommendations 
This report proposed a strategic framework for designing a renewable energy integrated microgrid for 
Canada’s rural and remote communities to reduce fossil fuels dependence. The proposed framework is 
composed of three primary processes: building generation profile evaluation model, carrying out 
modelling optimization and making a decision using AHP. The framework serves as a guide of how policy 
makers and system planners will make a decision on the optimal microgrid solution selection to meet the 
goal of reducing fossil fuel emissions in rural and remote communities as well as accelerating the rural 
electrification across Canada. In addition, the profile simulation models of a variety of DERs and the 
community demand proposed in this report are highly beneficial for narrowing the gap between microgrid 
design and development. 
 
Compared to the existing methodological framework design for microgrids, this project proposes a 
specific one applied for microgrids in rural and remote communities in Canada. All the mandatory 
information and data can be available in Canada’s public database. And all the simulation models are also 
developed specific to rural and remote applications. In addition, considering that the framework is 
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established to support a high-level decision-making, the AHP-based MCDM model is developed to build 
the potential of cross-sectoral cooperation, which makes the decision-making process more efficient. 
Furthermore, the presented optimization method is capable of not only offering economic and reliability 
analysis of a microgrid design like most of the other framework did, but also providing suggestion to power 
the future such as design of a 100% renewable energy microgrid. 
 
However, even though the framework is developed to be applicable to a large variety of microgrid designs, 
there is no one-size-fits-all solution to all of Canada’s rural remote communities. There always exist new 
technical challenges, specific concerns, or collaboration issues, all of which make the decision-making 
harder. Consequently, a Python-based application has been developed by the UNB team for deployment 
of the proposed microgrid design framework. This toolkit provides an open-source microgrid design and 
planning platform, which allows modelers and researchers to integrate with their models, algorithms, 
analysis tools, or any related information, and thereby making a substantial contribution to providing a 
clean, efficient, reliable and affordable solution for supplying energy to off- and weak-grid communities 
across Canada. 
 
The economic sustainability of renewable energy integrated microgrids aimed at rural and remote 
communities may require policy intervention, which means allocating public funds for covering both the 
initial investment and the operation and maintenance (O&M) expenses (specific to some particular 
equipment, such as lead-acid batteries). With the proposed framework, policy makers and system 
planners not only understand the optimal microgrid solution, but also have a detail expense estimation 
of the solution. In addition, policy makers and system planners should fully consider specific challenges 
and limitation of the investigated community and add them into the proposed AHP-based MCDM model. 
Lack of the knowledge of that could cause considerable difficulties in practice. 
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