
Open and Accessible Renewable Electricity System Modelling for Prince Edward Island

Matthew M^cCarville, Peter Rukavina, and Matthew Hall, PhD

Prior Research Examined 100% Renewable Electricity on PEI for the Existing Electricity Sector

M. Hall and A. Swingler, "Initial Perspective on a 100% Renewable Electricity Supply for Prince Edward Island," International Journal of Environmental Studies, vol. 75, no. 1, pp. 135–153, 2018.

Main Research Objective

Extend existing energy modelling capabilities on Prince Edward Island to include electrification across other carbon-intensive sectors – namely transportation and heating

"Achieving decarbonisation of the Canadian economy will require a profound transformation ... it is already clear that extended <u>electrification of the economy will be at the core of this</u> <u>transformation</u>." – Energy Modelling Initiative, 2019

Model Composition

In response to a void in modelling tools that can be applied to small-scale highly-renewable energy systems, that are open source, and that are easy to use, a new electricity system model has been created.

Highly customizable and open-source model

- Python backend → allows customization by advanced users
- Excel frontend → hides backend and is designed for anyone with basic spreadsheet proficiency and energy knowledge

Alignment with Open Data and Standard Data Sources

The open data sets include the following:

- Sub-hourly electricity load and wind data for PEI
- Environment and Climate Change Canada weather data
- Solar data accessible through the NREL System Advisor Model

Spreadsheet-Based User Interface Model Overview

	A	В	С	D	E	F	G	н	I	J	к
1	EMI-PEI Renewable Elec	ctricity Sys	tem Model								
2	This page gives an over	view of the	e active model compo	nents.							
3											
4	CLICK TO RUN MOD	EL									
5											
6											
7	Load		Generation		Storage		BEVs		Settings		
8											
9	Main Load		Wind North Cape		Batteries				import energy cost	\$/MWh	80
10	Heat Pump Heating		Wind Summerside		()			import capacity cost	\$/MW	80,000
11	Domestic Hot Water		Wind East Point		()			GHGs of imports	kgCO2e/MWh	565
12	Commercial Hot Water		Wind Existing		()			export capacity	MW	560
13	Heat Pump Cooling		Solar								
14	BEVs 25000			0							
15	0			0							

Loads Including Flexible Loads

A	в	с	D	E	F	G	н	
1 Loads								
2 List all fixed and flexib	le loads here.							
3		PREVIEW	PREVIEW	PREVIEW	PREVIEW	PREVIEW	PREVIEW	
			Heat Pump	Heat Pump	Domestic Hot	Commercial Hot		
4 Name		Main Load	Heating	Cooling	Water	Water	BEVs 25000	
5								
6 Load time series								
7 year long	select header	main load	HDH	CDH			BEVs 25000	
8 week long	select header				Domestic Hot Wa	Commercial Hot	Water	
9 day	select header							
0 week end day	select header							
1 seasonal adjustment								
2 seasonal scale	select header							
3 seasonal shift	select header							
4 Conversion								
5 performance curve	select header		ASHP Heating McASHP Cooling Mode COP Bins 21°C Setpoint					
6 year long	select header			temperature				
7 week long	select header							
8 day	select header							
9 week end day	select header							
0 Load shaping/scaling								
1 energy	MWh							
2 peak power	MW		68.82	7.50				
3 Demand response								
4 flexload model	1 or 2	1	1	1	1	1	1	
5 flexload fixed	MW	10						
6 flexload fraction	%		10%	10%				
7 fraction time series	select header							
8 flexload model 1								
9 nominal storage capac	i MWh				152	23.1	1500	
0 max charge rate	MW				113.9	17.3	250	
1 max discharge rate	MW				15.62	2.6	35.2	
2 self discharge	%/hour				0.0%	0.0%	0.0%	
3 charge efficiency	%				100%	100%	100%	
4 discharge efficiency	%				100%	100%	100%	
5 flexload model 2								
6 load shift type	0,1,2	0	0	1	1	1		
7 max time shift fwd	hr	4	2	2	4	4		
8 max time shift back	hr	4	2			4		

Generation Sheet with Preview

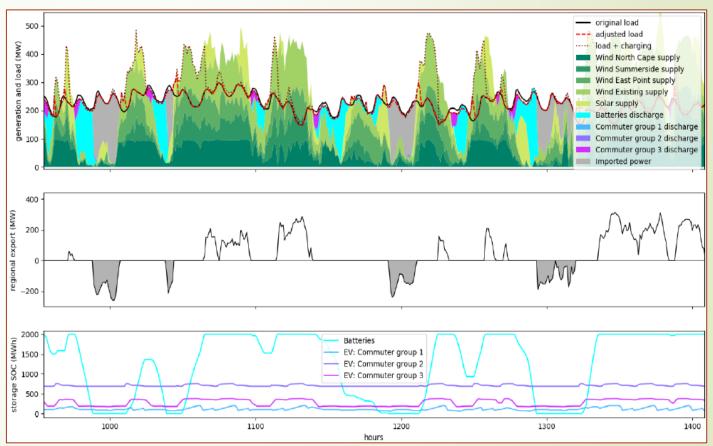
	A	В	С	D	E	F	G	н	I
	Generation								
	2 List all sources of po	wer here.							
	3		PREVIEW	PREVIEW	PREVIEW	PREVIEW	PREVIEW	PREVIEW	PREVIEW
				Wind					
			Wind North Cape	Summerside	Wind East Point	Wind Existing	Solar		
	5								
	Input time series								
	7 year long	select header	wind west	wind central	wind east	wind existing	solar		
	3 week long	select header							
) day	select header			St:	4		_	×
	0 week end day	select header			🛛 🛞 Figure	I		- 0	~
1		_				10.			
	2 seasonal scale	select header			* ← →	+ Q ≢	~ 🗈		
1	3 seasonal shift	select header							
1	4 Power curve					Ger	neration: Wind Sum	merside	
	5 performance curve	select header	G132-5MW Powe	G132-5MW Powe	G 25 -	. i 1			
	0 Shaping/scaling				Se 20 -	ي الأنبيانية ال	1. 1		
	1 energy	MWh			(st 20 - mt 15 - 10 -		بالباب البوالي	du dia 1100 di	
	2 peak power	MW	150	150	<u>5</u> 10 -	ta da cada da	LULIA AN (ALA), A	غار الارتبالي النائل	
	3 efficiency scaler	%	0.96		2 5	ht. I di misili	an an a' fh' i	l Bandar a Calo	
	4 Financial	/0	0.90	0.90	0-1	lt, annal a traine in Alain. Ildi	a nu landa a succedu	an an an an an an an an	(II w II M II
	5 lifetime		25	25	-		'		' -
	6 discount rate	years	0.05			LI (LINE C) DELLA (LINE)	A THE REAL AND A REAL AND	A DE LA DE LA DELLA DE LA D	li sili i
$\frac{2}{2}$		(%/yr) \$/W					LVILLILLIA IL IL I		
			1.59		₩ 100 -				
	8 OPEX fixed	\$/W/yr	0.021	0.021					
	9 OPEX variable	\$/Wh	0	0	8 50				
	0 GHGs	1. 1			- o- 1				
	1 Up-front emissions	kg/W	1	1	0	2000	4000	6000 8	000
	2 Fixed emissions	kg/W/yr	0	0					
	3 Variable emissions	kg/Wh	0%	0%					
3	4								i

Storage Technologies

	A	В	С	D	E
1	Storage				
2	List all energy storage	e capacities	that are not flexi	ble loads here.	
3			PREVIEW	PREVIEW	PREVIEW
4	Name		Batteries		
5	energy capacity	MWh	800		
6	max charge rate	MW	200		
7	max discharge rate	MW	200		
8	self discharge	%/hour	0.01		
9	charge efficinecy		0.95		
10	discharge efficiency		0.95		
11	Variability				
, 12	variation time series	select hea	der		
13					
<mark>4</mark> 16	Financial				
17	lifetime cycles		7500		
18	lifetime	years	25		
19	discount rate	(%/yr)	0.05		
20	CAPEX	\$/Wh	0.23		
21	OPEX fixed	\$/Wh/yr	0.015		
(22	OPEX variable	\$/Wh	0		
23	GHGs				
24	Up-front emissions	kg/Wh	0.65		
25	Fixed emissions	kg/Wh/yr	0		
26	Variable emissions	kg/Wh	0%		

Electric Vehicles

	A	В	С	D	E
1	BEVs				
	List all groups of BEVs that wi	II be modelled ba	here. (Use multiple groups to		
2	separate very different use pa				
3			PREVIEW	PREVIEW	PREVIEW
4	name		Commuter group 1	Commuter group 2	Light Duty
5	total battery capacity	MWh	200	750	375
6	minimum state of charge	%	50%	30%	50%
7	max charge rate	MW	12	100	50
8	max discharge rate	MW	10	0	50
9	self discharge	%/hour	0	0	0
10		%	1	1	1
11		%	1	1	1
12			200		
13					
14		1 or 2	2	1	1
	BEV Model 1 (ubiquitous cha				
16			-		
17	/	select header	-		
18		select header	-		
19		select header	BEV Category 3 - weekday		
20		select header	-		
21	unavailable fraction%	%	5%		
22					
23					
24					
25		select header			
26	· · · · · · · · · · · · · · · · · · ·	select header			
27		select header	BEV Category 1 - weekday	BEV Category 2 - weekday	BEV Category 3 - weekday
28	week end day	select header	BEV Category 1 - weekend day	BEV Category 2 - weekend day	BEV Category 3 - weekend day


Python-Based Model Backend

- Object-oriented programming automatically processes various energy system elements specified in columns of spreadsheet interface
- A class exists for each system element type (load, generation, storage, and EV fleet) and an object is made for each element specified by the user
- Makes model operation modular and efficient to change
- Model behaviours can easily be modified, or a new component type could be added by following the structure of the existing spreadsheet pages and corresponding Python classes
- The code is relatively simple and navigable, making it well suited for expansion to suit others' needs
- Time-marching trial-and-error model with some characteristics of optimization in the handling of demand response

Model Outputs

Console Printout

- Wind North Cape generation COE: 30 \$/MWh
- Wind Summerside generation COE: 42 \$/MWh
- Wind East Point generation COE: 33 \$/MWh
- Wind Existing generation COE: 62 \$/MWh
- Solar generation COE: 47 \$/MWh
- Batteries storage COE: 382 \$/MWh
- Total generation: 2003.2 GWh
- Total annual load: 1654.0 GWh
- Integrated generation: 1596.0 GWh, 79.7%
- Peak export (MW): 406.2 MW
- Peak ip port (MW): 266.7 MW
- Net import (GWh): -296.5 GWh
- Totol (exports only): 407229.4 MWh
- Total (imports only): 110739.4 MWh
- Imports energy cost: \$ 8.9M
- Imports capacity cost: \$ 21.3M
- Elec. import GHGs: 33221.8 tCO2e
- Local renewable energy: 93.5%
- LCOE: 105.0 \$/MWh
- Overall GHG intensity: 20.1 kgCO2e/MWh

Model Demonstration on PEI Scenarios

Installed capacity and capacity factors in each scenario

		Scenario 0	Scenario 1	Scenario 2
Installed	Wind	204	384	624
	Solar	0	225	550
capacity (MW)	Import	232	267	311
	Wind	34.6%	38.7%	41.0%
Capacity factor	Solar	n/a	14.7%	14.7%
	Import	41.1%	13.4%	4.2%

- Scenario 0: Baseline Case, 2016
- Scenario 1: Low Electrification Case, 2030
- Scenario 2: High Electrification Case, 2030

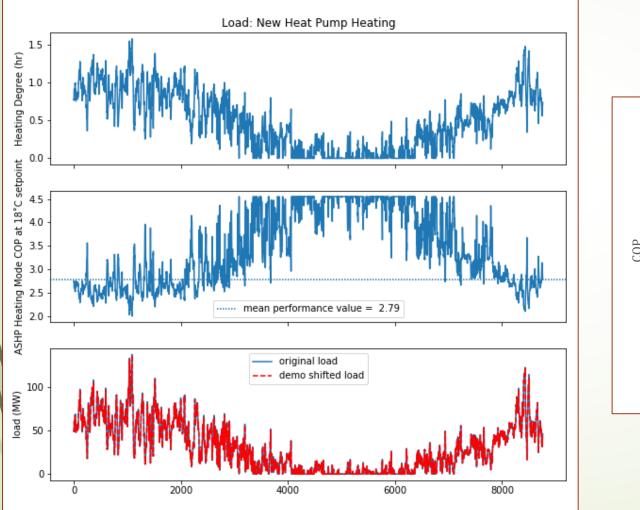
Electrification amounts modelled for each scenario

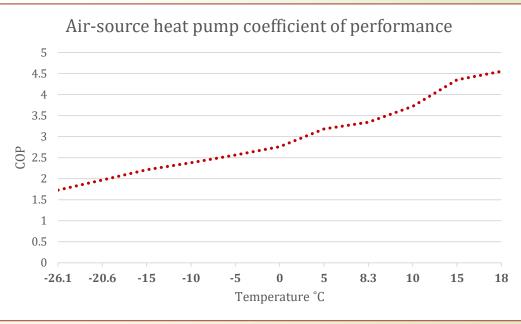
		Scenario 1	Scenario 2
	d SUVs		
Number of BEVs		25,000	75,000
Typical km/year/ve	ehicle	16,500	16,500
L gasoline avoided		41,250,000	123,750,000
tCO ₂ e avoided		94,463	283,388
	Air-source heat pumps		
L oil avoided		45,000,000	90,000,000
tCO ₂ e avoided		123,075	246,150
	Domestic hot water		
Number of hot wate	er heaters	25,300	50,600
L oil avoided		12,250,000	24,500,000
tCO ₂ e avoided		33,504	67,008
	Commercial hot water		
L oil avoided		1,950,000	3,900,000
tCO ₂ e avoided		5,333	10,667
	Total GHGs avoided from	m displaced fuels listed	above
tCO ₂ e avoided		256,375	607,212
L oil avoided tCO_2e avoided L oil avoided tCO_2e avoided	er heaters Commercial hot water	12,250,000 33,504 1,950,000 5,333 m displaced fuels listed	24,500,000 67,008 3,900,000 10,667 above

Please note – Numbers shown of domestic water heaters to be electrified in modelling includes wood and propane-based water heaters but their fuel/GHG quantities are small and excluded in the table. Heat pumps add some new cooling load, excluded from the table.

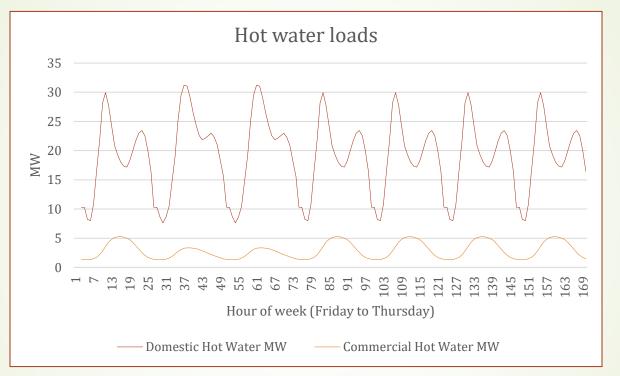
Energy and power storage capacities modelled

Types of Storage	Energy Capacity	Power Capacity
Scenario 1	MWh	MW
Batteries	500	125
BEVs	1500	250
Thermal	1006	222
Scenario 2	MWh	MW
Batteries	1000	250
BEVs	4500	750
Thermal	1931	383

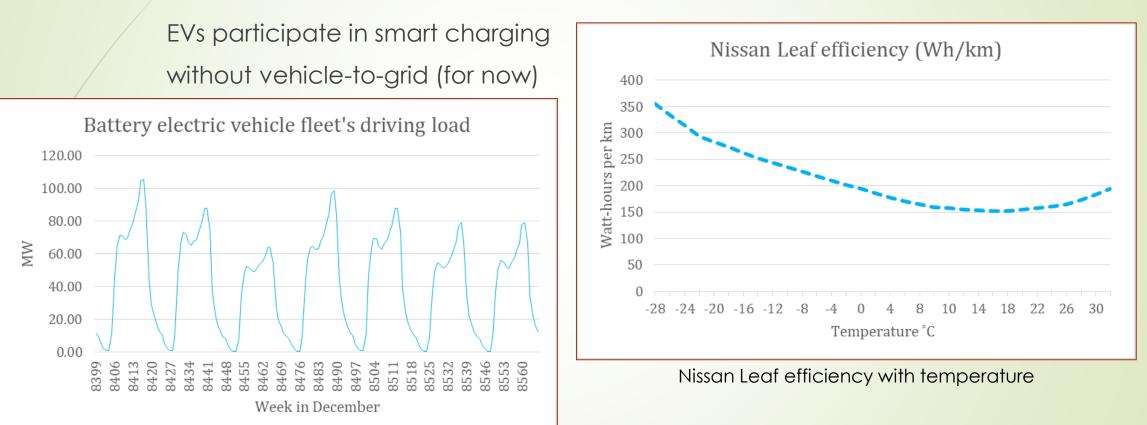

Financial parameters of selected energy and storage technologies


Technologies		Units	2025
Solar PV optimally tilted	Capex	\$/kW	699
	Opex fixed	\$/kW/yr	17.7
	Opex var	\$/kWh/yr	0
	Lifetime	years	35
Wind onshore	Capex	\$/kW	1590
	Opex fixed	\$/kW/yr	21.0
	Opex var	\$/kWh/yr	0
	Lifetime	years	25
Batteries	Capex	\$/kWh	175
	Opex fixed	\$/kW/yr	8.5
	Opex var	\$/kWh/yr	0
	Lifetime	years	30
thermal energy storage	Capex	\$/kWh	50
	Opex fixed	\$/kW/yr	0.65
	Opex var	\$/kWh/yr	0
	Lifetime	years	30

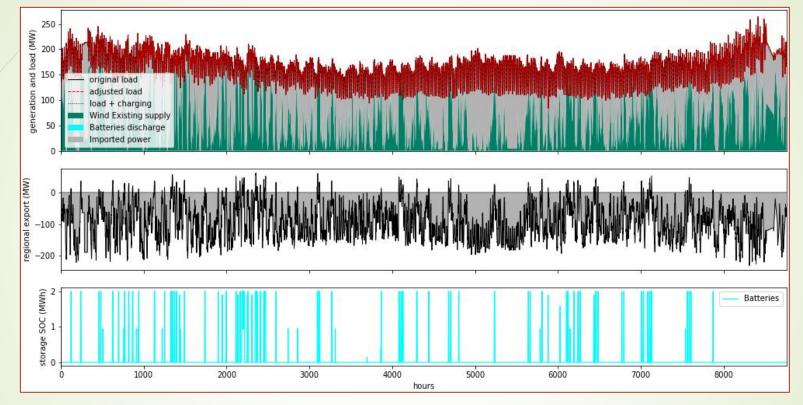
Import-export parameters


Cost of imports	80	\$/MWh	
Capacity cost	80	\$/kW	
GHGs of imports	300	kg CO ₂ e/MWh	
Transmission capacity	560	MW export/import	

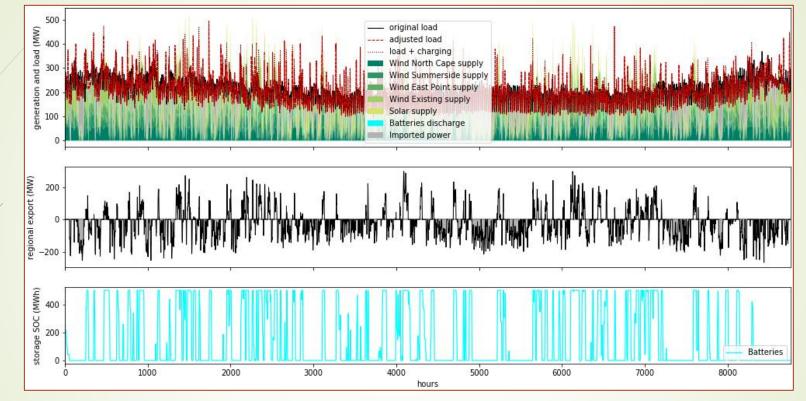
Heat pump loads are modelled by applying temperature-dependent coefficient of performance to air-source heat pumps



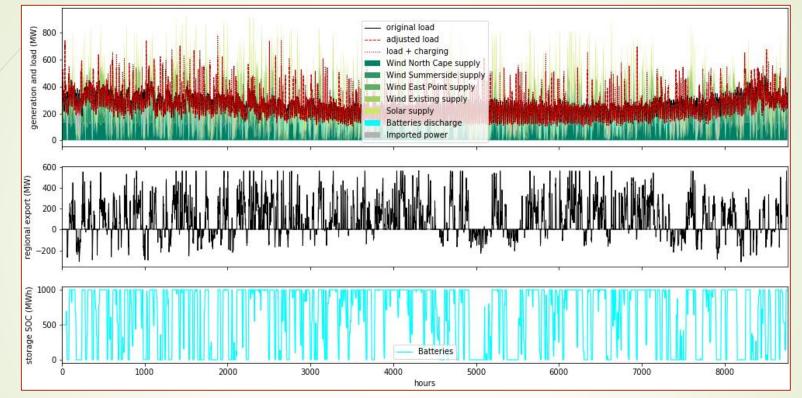
Sample of domestic and commercial hot water load profiles


Aggregate hot water loads have inherent thermal energy storage, thus are flexible and subject to demand response, but when hot water temperatures reach a minimum (e.g. – 110-120°F) hot water loads become inflexible

Electric vehicles are modelled using intraday and seasonal driving patterns, and by including an efficiency-based temperature dependence


Sample BEV fleet load showing temperature dependence Note – above is BEV power consumption while driving (unplugged)

Baseline Scenario - Results


- Total annual load: 1420 GWh
- Local renewable energy: 41%
- Overall LCOE: 85 \$/MWh (current CAD)
- Overall GHG intensity: 177 kgCO₂e/MWh

Moderate Scenario – 2030 Results

- Total annual load: 1753 GWh
- Local renewable energy: 82%
- Overall LCOE: 74 \$/MWh (current CAD)
- Overall GHG intensity: 54 kgCO₂e/MWh

Ambitious Scenario – 2030 Results

- Total annual load: 2186 GWh
- Local renewable energy: 95%
- Overall LCOE: 81 \$/MWh (current CAD)
- Overall GHG intensity: 16 kgCO₂e/MWh

End-use energy reductions due to electrification of transportation and heating

		<u>Scenario 1</u>	<u>Scenario 2</u>
Cars, trucks and SUVs to battery electric ve	<u>ehicles</u>		
Displaced gasoline fuel use	MWh/yr	401,042	1,203,125
New electrified load Net energy use reduction	MWh/yr %	100,260 75.0%	300,781 75.0%
Oil space heating to air-source heat pumps	5		
Displaced light fuel oil use	MWh/yr	483,500	967,000
New electrified load	MWh/yr	134,504	269,007
Net energy use reduction	%	72.2%	72.2%
Oil domestic hot water to joule heat			
Displaced light fuel oil use	MWh/yr	131,619	263,239
New electrified load	MWh/yr	80,434	160,868
Net energy use reduction	%	38.9%	38.9%
Oil commercial hot water to joule heat			
Displaced light fuel oil use	MWh/yr	20,952	41,903
New electrified load	MWh/yr	12,804	25,608
Net energy use reduction	%	38.9%	38.9%
Total energy reductions due to modelled e	lectrification of tr	ansportation and h	eating
Displaced gasoline and oil use	MWh/yr	1,037,113	2,475,267
New electrified load	MWh/yr	328,002	756,264
Net energy end-use reduction	MWh/yr	709,111	1,719,003
Reduction in electrified end-use	%	68.4%	69.4%

GHG Emissions

2016 GHG emissions in PEI's inventory totaled 1,830,000 tCO₂e of which energy accounted for 1,310,000 tCO₂e⁻¹

Scenario 1 reduces annual GHG emissions to ~1,574,000 tCO₂e

Decrease of ~256,000 tCO₂e in PEI's GHG inventory

- Scenario 2 reduces annual GHG emissions to ~1,223,000 tCO₂e (~1.2 MT CO₂e) Decrease of ~607,000 tCO₂e in PEI's GHG inventory (meets PEI's latest 2030 target)
- Additionally, modelled import electricity GHGs² are reduced
 - 251,135 tCO₂e in baseline year
 - 94,946 tCO₂e with moderate electrification and RE scale-up

Decrease of ~156,000 tCO₂e in import electricity GHGs relative to baseline year

34,739 tCO₂e with ambitious electrification and RE scale-up

Decrease of ~216,000 tCO₂e in import electricity GHGs relative to baseline year

[1] Environment and Climate Change Canada, National Inventory Report 1990–2017: Greenhouse Gas Sources and Sinks in Canada, 2019.

[2] Import electricity GHGs are excluded in PEI's GHG inventory. See methodology in reference 1. Although, these GHG reductions are relevant in the regional, Canadian, and global contexts.

Value to Informing Policy

Modelling can inform energy policy and emission reduction strategy decisions. In 2019 the Legislative Assembly of PEI adopted a new target to reduce GHGs to 1.2 MT CO_2e in 2030. This will be challenging as PEI's population is expected to grow from 147,000 in 2016 to 181,000 in 2030.

This new model allows exploration of various policy-relevant considerations:

- The electrification of carbon-intensive transportation and heating sectors
- The effects of both population growth and energy conservation measures beyond electrification;
- the use of vehicle-to-grid technology to leverage EV-based energy storage;
- distributed thermal energy storage for heating and cooling;
- centralized large-scale thermal energy storage systems; and
- electrification of additional sectors (e.g. manufacturing, agriculture, fishing).

High-level metrics provided by the model, such as energy costs and GHG emissions changes, can be useful to policymaking in areas of both general sizing of energy system components, and examining trade-offs and costbenefit comparison of energy transition alternatives.

Conclusions

- Model is demonstrated on three scenarios based in PEI, illustrating data sources available and how they can be used to evaluate energy alternatives
- Low electrification case: clear quantification shows that a lot will be needed to reduce energy-related emissions in line with the province's stated targets
- High electrification case (rapid electrification of transportation and heating): overall energy costs may be slightly lower while benefits of climate and health damage costs avoidance will be significant
- Results suggest costs do not change significantly with high renewables and electrification
- These results should be verified in terms of both the model's calculations, and the assumptions and inputs used in formulating the scenarios

The open-source model should provide a new level of accessibility for engaging with energy system alternatives while maintaining the rigour necessary to give trustworthy and informative results

Thank you!

Twitter @Matt_McCarville

@MattEHall

Peter Rukavina

energy.reinvented.net