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Context 

The Energy modelling initiative 

The human activities cause strong pressures on the environment, including climate change, 

the degradation of air quality and reduction of biodiversity. One important contributor to 

these problems is the generation of electricity. For that reason, it has become necessary to 

improve the way electricity is generated and consumed (since both the production and 

demand are linked). The main strategies to reach that goal are to reduce the dependence on 

fossil fuels, increase the integration of renewable energy and enhance global energy 

efficiency. To that end, technologies are being developed, innovative management of power 

generation and demand are implemented, and energy models are improved to better 

represent these new realities in the design of energy policies. 
 

“Real-time modelling of electricity generation enable a better assessment of environmental 

impacts of electricity which leads the way to a new optimization of electricity consumption” 
 

In that context, the Energy modelling initiative (EMI) aims to identify experts and innovative 

energy models that could help in designing energy policies to mitigate climate change and 

global environmental degradation. Following the EMI call for projects our modelling approach 

on smart power consumption was selected. Its originality lies in the consideration for real-

time changes in electricity generation and demand when assessing the emissions and 

environmental impacts due to electricity consumption. This approach opens the path to a new 

optimization of electricity consumption based on the real-time emissions intensity rather than 

only the real-time price of electricity. 

More research is, however, needed to answer pending questions such as: how any consumers 

would comply with power consumption recommendations that would affect their daily 

habits? What would be the amount of electricity that could be displaced in time to reduce 

power generation emissions? How marginal power generators and their emissions would be 

affected by these changes in electricity consumption? How this modelling approach could be 

integrated into other energy models and what would be the benefits to do it? 
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The Model 

Real-time energy modelling and smart consumption of electricity 

A. MODEL AND TYPE OF RESULTS 

The model is a methodological framework designed to (1) calculate electricity emissions 

based on temporally disaggregated power generation data [defined as real-time emissions in 

this report], (2) provide real-time recommendations to electricity consumers and (3) assess 

the environmental benefits of enforcing such recommendations. Similarly to the TIMES 

model, regional data are necessary to design the model for a specific region. Practically, it can 

be applied to any region where temporally disaggregated power generation data [defined as 

real-time power generation data in this report] are available. 

The model is made of three main interconnected modules as presented in Figure 1: 

 

Figure 1 – Structure of the electricity emission model 

The first element calculates the real-time emissions of electricity within a power grid. It uses 

the real-time information provided by the electricity operator (power generation and 

import/export of electricity) and the emission factor of each power generation technology. 

Environmental impacts due to these emissions can also be assessed for a large variety of 

indicators using a life cycle database such as the ecoinvent database and impact assessment 

methods such as Impact World+ or ReCiPe. In this report, the focus is made on greenhouse 

gas (GHG) emissions and climate change. 
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The second module provides recommendations to electricity consumers based on the 

forecasted electricity emission intensity. This emission forecast is based on grid mix 

predictions achieved with a machine learning model trained with power grid historical data. 

The third module simulates the effect of the recommendations on the consumers and their 

consequences on marginal power generation and emissions. The compliance of the 

consumers with the recommendations is simulated with an agent-based model, while the 

marginal power generators are identified using the historical and real-time power grid data. 

Then, the emissions of the consumers and those saved by the recommendations are 

calculated using the first module. 

The model is actually designed to assess the short term benefits of the smarter consumption 

of electricity but it is also aimed to assess the long term benefits in further developments. 

A.1 Technical description of the model 

Module 1: Real-time electricity emissions 

This module has been developed during several research projects to progressively include the 

concepts of global emissions, imported emissions and marginal emissions (Dandres et al., 

2017; Maurice et al., 2014; Milovanoff et al., 2017; Walzberg et al., 2019a). The module 

calculates the emissions associated with the consumption of electricity (past or real-time) and 

the anticipated emissions due to a change in the future power demand. The emissions are 

calculated using eq. i and ii for a period t (1 second, 5 minutes, 1 hour or more). 

                         (i) 

Where: 

◦ P(t): power consumption during the time period t; 

◦ EF(t): emission factor of the electricity during the time period t. 

       
                               

 
            

 
                       

 
         

                
 

              
 

              
 

  (ii) 

Where: 

◦ Gen Source(i) (t): power generation by the source i during the time period t; 

◦ EF Source(i) (t): emission factor of the source i during the time period t; 

◦ Imp Reg(j) (t): import of electricity from region j during the time period t; 
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◦ EF Reg(j) (t): emission factor of the region j during the time period t (see eq. iii below); 

◦ Exp Reg(k) (t): export of electricity to region k during the time period t; 

◦ EF Grid (t): emission factor of the power grid during the time period t: 

          
                               

 

                
 

 (iii) 

The emissions related to real-time or past electricity consumption are calculated based on all 

active power plants of the grid as well as the imported and exported electricity. Figure 2 

summarizes the method. 

 

Figure 2 – Calculation of real-time electricity emissions 

Legend: The emissions of each power generation technology are calculated using the electricity generated and 

the corresponding emission factor (bottom of the figure). Then, all emissions of local power generation are 

summed (center of the figure). Emissions from imported electricity are calculated using the emission factor of 

the exporting region and the amount of imported electricity (left part of the figure). The emissions from the 

exported electricity are calculated using the local power generation emission factor and the amount of 

exported electricity (right part of the figure). Imported emissions are added to local emissions while exported 

emissions are subtracted from them. The resulting total of emissions is then divided by the local power load 

(local power generation + electricity import – electricity export) to get the power grid emission factor (top of 

the figure). Finally, the emissions of consumed electricity are calculated using the electricity consumption and 

the power grid emission factor. 

When it comes to calculate the marginal emissions related to a change in the future demand, 

only the power plants adapting their capacity to meet that change are considered. The 
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identification of these so-called “marginal” power plants is, however, a complex task and 

there is no standardized method to do it (it is the purpose of another project with IEEE under 

the IEEE 1922.1 standard). Consequently, different results might be obtained depending on 

the chosen emission factor (global or marginal). The meaning of these results is however 

different and are therefore not equivalent. The calculation of the global electricity emission 

factors has been standardized in IEEE 1922.2 (Dandres et al., 2019) 

In this model, the power plants are regrouped by technology (i.e. nuclear, natural gas, hydro, 

etc.) and the marginal technologies are identified every hour using the method presented in 

Dandres et al. (2017) to identify the local marginal technologies and improved in Walzberg et 

al. (2019a) to also include the marginal technologies located in interconnected networks. This 

method considers that all changes in non-intermittent power generation technologies would 

contribute, in proportion to their capacity changes, to fulfill a change in the power demand. 

Intermittent generators are excluded by default but could be considered depending on the 

perspective of the application of the method. Additionally, this method considers that the 

same marginal power generation technologies would be affected regardless the demand is 

increased or decreased. 

Module 2: Recommendations on electricity consumption 

This module stands on the use of machine learning to predict the power grid emission factor 

in a region. It uses historical data to forecast the hourly emission factors for the next 24 

hours. The method is summarized in Figure 3. 

 

Figure 3 – Recommendations on electricity consumption module 

The dataset used for the prediction is generated by the real-time electricity emission module 

and possibly completed with more data retrieved from the electric operator. Because 

machine learning needs a large dataset to train, it is required to calculate the hourly emission 

factors with at least 28 days of data. Since emission factors are usually comprised between 0 

and 1, it is not necessary to normalize them. Depending on the share of intermittent 

renewable energy in the power grid, it might be necessary to complete the dataset with more 
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data to reach a suitable level in predictions. Such data are the day ahead forecasts of the 

power demand and the intermittent renewable energy production. Once the dataset is ready, 

it is used to train a neural network that counts 3 layers of long short-term memory (LSTM) 

cells (see Figure 4). Several architectures were tested during the development of the module 

and the LSTM algorithm was chosen because of its better results due to its ability to select 

and keep past information of the time series. LSTM is a variant of the recurrent neural 

network (RNN) but differs from it because it can choose to update the cell state at each 

calculation sequence (each hour in our case). 

 

Figure 4 – Architecture of the neural network 

Legend: the 5 elements of the X vector are the emission factor (e), the day ahead demand (d), the power 

generation from solar panels (s), the power generation from wind farms (w) and the mask (m). The mask is 

used to prevent the calculation of a prediction for the past hours (i.e., t < 1): it has a value of 1 for the past 

hours and 0 otherwise. X is processed by the three layers of the neural network (h1, h2 and h3) to generate 24 

predictions (y, for 0 < t < 24). See Riekstin et al. (2018) for more details on the method. 

Once the emission factors forecasts are obtained, the minimums are identified to provide 

recommendations. Practically, the recommendations depend on the type of consumers. For 

instance, for residential consumers, it would not be relevant to recommend launching 

washing machines and dryers at night due to noise issues and the need for a human 

intervention to empty the washing machine and fill the dryer. It could, however, be pertinent 

for loading the batteries of electric vehicles (assuming a timer can start loading the batteries 

at the right time). This means the consumer must be studied to understand his needs and 

flexibility to provide him with adapted recommendations on its electricity consumption. 
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It should be noted that the model is used in real-time and must be trained continuously to 

provide new predictions. Moreover, it is specific to the power grid on which it has been 

trained and should not be used for other power grids. 

Module 3: Consequences on power generation and emissions 

Many reasons can explain why human beings won’t follow recommendations involving a 

behavioural change. The purpose of this module is to evaluate to what extent the emissions 

can be reduced by real-time recommendations on electricity consumption provided to human 

beings. To that end, an agent-based model (ABM) is used to represent the acceptation of the 

consumers to comply with the recommendations. More than that, the ABM also evaluates 

the role of human interactions between consumers and uses it to enhance the adoption of 

the recommendations. 

The ABM considers four types of electricity consumers that are defined according to their 

relation to energy: passive ratepayers, frugal goal seekers, energy epicures and energy 

stalwarts. Each of these energy consumers has a different probability to comply with a 

recommendation implying a behavioural change (e.e, a new schedule of electricity 

consumption, see Table 1). 

Table 1 – Type of energy consumer and compliance with behavioural recommendations 

Type of energy consumer Compliance with recommendations 

Energy stalwarts ++ 

Frugal goal seekers + 

Passive ratepayers - 

Energy epicures - - 

Each consumer may also be influenced by its neighbours through the share of information 

related to the demand-side management program. Such info can be the average compliance 

rate of participants, the avoided emissions by neighbours, the average electricity 

consumption, etc. 

Figure 5 summarizes the structure of the agent-based model. The behavioural modelling of 

the consumer starts when he received a recommendation to adapt his electricity 

consumption. He may comply or not depending on his type of energy consumer (cf. Table 1). 

Then, through the share of information between consumers, each consumer compares 

himself to its neighbourhood. Through a set of probabilities, the model estimates the chance 

that a consumer that did not comply with a recommendation will still enforce it if (1) it has 
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been enforced by its neighbours and (2) it is easy enough. Moreover, the model also 

considers the case where a consumer has complied with the recommendation and finally 

cancel it due to discouragement. For more detailed information on the model, see Walzberg 

et al. (2019b). 

 

Figure 5 – Structure of the agent-based model 

The emissions avoided by the measures are then calculated according to the adoption of the 

measures and the electricity emission factors corresponding to the time and region when and 

where the measures are applied. Considering only the fraction of the power consumption 

change at a time, the global and marginal emission factors are combined to calculate the GHG 

emissions avoided by the adoption of the measures: 

                                      

 

 

Where: 

 Em is the avoided emissions over the studied period; 
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 EFg,t and EFm,t the global and marginal emission factors at time t; 

 Pt and Pt-1 are the power consumption at time t and the previous period of time; 

 min[A,B] is the minimum between A and B. 

By combining different possible behaviours with their probability of occurrence among the 

population, the model provides a better representation of the reality than assuming, for 

instance, that 15% of the population will comply. Moreover, the agent-based model can 

explore different types of recommendations and information feedbacks to compare their 

effectiveness to increase compliance with the recommendations.  

In theory, by modelling the entire population of an area the agent-based model could 

evaluate the global compliance with the electricity recommendations and estimate the 

reduction of the power demand and emissions. Practically, this module is, however, still at its 

early stage and has only been applied to a residential population living in smart houses. It is 

now required to model other segments of the population to be able to evaluate the effect of 

electricity consumption recommendations on the global power demand. 

A.2 Type of results 

Given the three modules of the model, three types of results are generated: 

 The real-time electricity emission factors that express the intensity of the power grid 

emissions at a specific time. Two types of emission factors are computed: the global 

emission factor representing the average emission rate of the power grid (of all power 

generators) and the marginal emission factor representing the emission rate of the 

power grid due to a change in the power demand (emission rate of the marginal 

generators). These emissions factors can be used in dynamic life cycle assessment, 

carbon footprint and any emission disclosure program. It is expected that the accuracy 

of the results of these methods would be increased as compared to the conventional 

methods that are based on annual average emission factors. 

 The machine learning model that predicts the emission intensity of the power grid 

electricity for the next twenty-four hours. This tool can be used then to help the 

consumers to schedule their power demand and minimize their emissions. The tool is 

dynamic since it has to be trained constantly with new data (the last available power 

generation data). 

 The emissions avoided by the enforcement of a smarter consumption of electricity. 

The model also generates knowledge on the factors influencing the acceptance of the 
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consumers to change their consumption behaviour. Such knowledge can be used when 

designing dynamic demand-side management programs. 

B. MODEL STRENGTHS AND LIMITS 

The global strength of the model is to (1) provide a more accurate picture of the emissions 

due to electricity consumption, (2) help consumers to reduce their emissions and (3) generate 

useful knowledge to enhance the adoption of demand-side management programs. 

Nevertheless, the model can be improved and its strengths and limits differ for each module. 

Module 1: Real-time electricity emission module 

The strength of this module is to provide a series of more accurate emission factors 

representing the emission intensity of electricity. These emission factors can then be used to 

calculate the emissions of an electricity consumer retrospectively (ex: annual emissions (i.e., 

scope 2 emissions in the GHG Protocol framework) of an enterprise) or to inform electricity 

consumers of the real-time rate of electricity emissions. 

This module can be considered as very strong in theory but, practically, its strength depends 

on the data used to feed it. Thus, the input data are the limit of this model: inaccurate data 

decrease its strength. 

The model uses two types of data: 

1. The power grid data describing the real-time power generation and exchanges; 

2. The emission data associated with the emissions of each power generation 

technology. 

Ideally, the power grid data should correspond to the electricity produced by each power 

generation technology with a reasonable temporal granularity (e.g. hourly data). The power 

grid data should also include the exchange between the studied power grid and its 

interconnected electric networks. 

The emission data should enable the calculation of the representative emission factors of the 

power generation technologies used in the power grid and the emissions due to the 

electricity imports. In this latter case, it means that the real-time power grid data of the 

interconnected electric networks are required if the electricity imports contribute 

significantly to the emissions of the studied power grid. 

Considering that not all power grid operators provide real-time data, it often happens that 

the emission factor related to the electricity imported from an electric network has to be 
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approximated using the annual average emission factor of that power grid (annual data are 

widely obtainable).  

If the quality of the power grid and emission data is high, then the module provides a more 

accurate assessment of the emissions attributed to the consumption of electricity than 

conventional models. 

The use of marginal emission factors to plan electricity consumption is an important feature 

of the model since a lot of “green electricity consumption plans” ignore the concept of 

marginal electricity. By identifying the marginal generators affected by changes in the 

demand, the module provides more representative assessments of the emissions that can be 

avoided by smart electricity consumption. 

It should be noted, however, that there is some uncertainty on the marginal emission factors 

due to power grid operations. Indeed, marginal generators can be classed under different 

types depending on the temporal range they operate. Some are used in real-time (<5 min 

range) to meet changes in the power demand while others may fulfill the changes in the short 

term (10-30 min range) to free the real-time marginal generators. The modelling of the 

operation of these marginal generators is, however, difficult due to the lack of power grid 

historical data. Thus, the marginal emission factors calculated by the model are based on 

partial information regarding the operation of marginal generators. More representative 

marginal emission factors could be calculated with the availability of more detailed data. 

Another source of uncertainty on the marginal emission factors is the variation of the 

intermittent power generation. Indeed, some power plants have to adapt their capacity to 

absorb the changes in wind farms and solar panels generations to meet exactly the power 

demand. The method used to calculate the marginal emission factor includes these changes 

bringing some noise to the “real” marginal power mix that aims to identify the emissions 

associated with a change in the power demand (instead of a change in the production due to 

intermittent power changes). More research is actually being done on historical data to 

better understand the coupling of the controllable power plants with the intermittent power 

generators. 

Module 2: Recommendations on electricity consumption 

The strength of the module is to provide information on the future intensity of electricity. 

Such information can be very useful to electricity consumers to schedule their activities and 

reduce the power grid emissions. This module uses the power grid data and emission factors 

calculated by the first module. Therefore, its robustness depends on that of the first module. 

Its strength is also dependent on the machine learning model performances. While the 
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predictions of the global emission factors are good, improvements are necessary for the 

predictions of the marginal emission factors. For that reason, the second module is 

considered as semi-completed and needs further work. An important point regarding the use 

of the emission factors is that the use of the global emission factor aims to reduce the 

consumer emissions while the marginal emission factor aims to reduce the global emissions 

of the power grid. This subtility is important since minimizing its own emissions does not 

necessarily lead to the global minimization of emissions (Dandres et al., 2017). 

Global emission factors: the predictions are generally good enough to help the consumers to 

reduce their own emissions but it is observed that when a sudden temperature change occurs 

between the training period (i.e. the past 28 days) and the predicted period (i.e. the next 24 

hours), then the quality of the predictions are sometimes seriously affected. It can be 

explained by the influence of the temperature on the power demand. For instance, in winter, 

a sudden decrease in the temperature leads to a rapid increase in the use of heating systems 

that rises the global power demand. Similarly, in summer, a rise of the temperature is 

associated with the increasing use of air cooling systems that also increases the global power 

demand (symmetric effects can be observed with opposite temperature changes). In these 

situations, different power plants may be involved to meet the power demands of each 

period. Thus, the power mix of the training period and its emission rates may differ sensibly 

from those of the predicted period. These effects depend on the regions and the use of 

electric equipment to heat or cool the buildings. For that reason, the algorithm of the 

machine learning model is currently being improved by introducing meteorological data in its 

training. Moreover, due to the rapid development of machine learning techniques, new 

algorithms are also tested (Abdulnour et al., in preparation). 

Marginal emission factors: the quality of the predictions is actually not suitable to help the 

consumers to reduce global emissions. While the global power mix changes slowly in time, 

the variations of the marginal power mix are greater and faster which results in more chaotic 

changes in the marginal emission factors. The prediction of marginal emissions is therefore 

still an area of research. Different approaches are being tested: predicting the marginal power 

mix or directly the marginal emissions. Using the power grid and emission data only (including 

forecasts provided by the electric operator) or also adding the prediction of the global 

emission factor. It is expected that the variations in the intermittent sources of energy impact 

the marginal power mix more than the global power mix. Thus, investigating the power mix 

changes due to changes in intermittent power generation could provide insightful 

information to predict the marginal power mix. 
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The strength of this module is to provide real-time information to the consumers so they can 

adapt their power demand to reduce global emissions. Moreover, instead of focusing on the 

global power mix, it aims to provide recommendations based on the power plants that would 

be truly impacted by a change in the demand. As demonstrated in Dandres et al. (2017) on 

the management of a cloud computing load dispatched between two data centers powered 

by different power grids, the consideration for the marginal electricity improves the usual 

way to minimize emissions and provides opportunities to additional emission reductions at 

the global level rather than just focusing on the data center level. 

One important limitation of this module (for both the global and marginal emission factors) is 

that power grid data have to be collected continuously to feed the machine learning model 

that also has to be trained constantly. 

Module 3: Consequences on the power grid and emissions module 

This module stands on several hypothesis and data that are used to represent human 

behaviour. Moreover, the effective reduction of emissions is linked to the recommendations 

that are based on the predictions from the second module. Consequently, there are in theory 

two types of uncertainty that can affect the module results : (1) the uncertainty coming from 

the modelling of human behaviour and (2) the uncertainty due to wrong recommendations. 

Unlike the second module, it is more complex to validate the modelling of the third module. 

Indeed, the predictions of the second module can easily be compared to the real emission 

factors. Comparing the predicted response of consumers to the real one would require access 

to power consumption data of people participating in a demand-side management program. 

Then, the results of the agent-based model could be compared to the real consumer 

response. 

The main strength of the agent-based model is not the simulation results but its ability to 

identify the factors and drivers of human behaviours that lead to these results. Its main 

strength is its capacity to enhance the adhesion to demand-side management programs by 

proposing measures that will be more welcomed by the program participants. Another 

strength of the module is to take into account the effect of human interactions over time 

instead of considering each participant independently. One the one hand, it provides more 

realism to the simulations because such interactions happen and may influence the behaviour 

of each consumer. On the second hand, it enables the use of these interactions to enhance 

the adhesion of the population to the demand-side management program. 
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C. HOW IT COMPARES WITH OTHER MODELS WITH SIMILAR OBJECTIVES 

To the best of the author’s knowledge, there is no model with similar objectives. Some 

methods or models may, however, have similar objectives of the model modules. 

Module 1: real-time electricity emissions 

With the increasing availability of power grid data, methods and models have been developed 

to calculate real-time emissions of power generation (Gordon et al., 2009; Maurice et al., 

2014; Roux et al., 2016; Tranberg et al., 2019). While Gordon was indeed a pioneer in 

studying the hourly variations of the factors in Ontario, our work (Maurice et al., 2014) was 

still among the firsts to propose a method to calculate it. IEEE 1922.2 (Dandres et al., 2019) is 

also the first initiative to standardize the calculation of a real-time electricity emission factor. 

Today, Internet websites https://www.electricitymap.org and https://www.watttime.org 

provide real-time emission factors for the regions where power grid data are available in real-

time. Such information is commonly used by the information and communication 

technologies community to design algorithms that minimize data centre network emissions 

by processing the server load in the region where the emission rate is the lowest (Giacobbe et 

al., 2015; Li et al., 2016). These approaches neglect, however, the effect on the power grid of 

sudden increases in regional power demands. This is the reason why it is proposed to 

consider also the marginal emissions due to server load management within data centre 

networks (Dandres et al., 2017). The calculation of marginal electricity emissions has long 

been made in the context of life cycle assessment (LCA) (Mathiesen et al., 2009). But unlike 

the previous works in LCA, the method used in this model is based on historical data rather 

than market assumptions and it identifies a mix of marginal technologies rather than a single 

one. Furthermore, the method used in this model focused on different time scales than those 

documented in previous LCA models. The model provides marginal emission factors at a 

sharp temporal granularity rather than identifies the future power plants that will be added 

to the network in the coming years as done in previous LCA models. 

The concept of marginal electricity remains actually still unknown by most of the people 

developing methods to reduce emissions related to electricity consumption. Thus, by 

providing marginal emission factors, the first module is, in the context of emission reductions 

by the consumers, ahead of other existing approaches. 

Module 2: Recommendations on electricity consumption 

Machine learning is applied to a large variety of activities, including the electric sector, but at 

the time the second module was developed, only one study was found using machine 

https://www.electricitymap.org/
https://www.watttime.org/
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learning to predict electricity emission factors (Wang et al., 2016). The authors followed a 

different approach to predict the emission of the PJM network (powering Mid-Atlantic US 

states). Instead of using the time series of electricity emissions they used the marginal price 

series of electricity. This approach seems to provide good results in networks were fossil 

power generation dominates. However, it does not seem to be successful in regions with 

significant contributions from renewable energy (because unlike fossil power, hydropower 

can generate marginal electricity at a very low cost). As reviewed by Rolnick et al. (2019)1 new 

developments have been made in the field of power grids and machine learning but the 

method used in the model was not compared to them so far. 

Module 3: Consequences on the power grid and emissions module 

This module has been released recently (October 2019) and the comparison with other 

models is too preliminary to be presented here. 

D. ITS PLACE IN THE ENERGY LANDSCAPE / MODELLING ECOSYSTEM 

The purpose of the model is to provide real-time recommendations to electricity consumers 

to help them to reduce their emissions. Thus, it should be used to create and implement 

dynamic demand-side management programs. The consideration for marginal electricity and 

a better understanding of human behaviour would help to design more efficient measures: 

tackling the source of marginal emissions and increasing the chance that the behavioural 

measures are adopted by the participants of the demand-side management programs. It 

should be noted that it is an evolving model that needs to be updated in real-time with the 

power grid data (and possibly, in the long-term, with the trends in human behaviours). 

The modules of the model could also be integrated into prospective energy models (TIMES 

and others) to take into account the effect of dynamic demand-side management programs 

in broader energy policies. It requires however that (1) the granularity of the prospective 

energy model is sharp enough to enable “real-time” recommendations to the electricity 

consumers. 

Finally, the model has a huge potential for emission reductions with the emergence of the 

Internet of things and smart buildings. Indeed, assuming it will become possible to control 

each electric equipment, the smart programming of their usage could avoid a lot of emissions 

                                                

 
1
 arXiv:1906.05433v2  [cs.CY]  5 Nov 2019 
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automatically without involving significant behavioural changes. For instance, it could become 

possible to program the loading of an electric vehicle by simply specifying the time when it 

has to be reloaded. Then, a smart controller would integrate the deadline constraint to find 

the best time to load the battery. In addition, the model could also share the electricity of the 

battery with the power grid to prevent the use of the most pollutant generators (while this 

effect could be negligible for one vehicle, it could become important for a fleet of electric 

vehicles).  

E. THE STATE OF DEVELOPMENT & EVOLUTION ROADMAP 

The model is still under development but the modules are already able to provide concrete 

results. 

Module 1: real-time electricity emissions 

The calculation of the global emission factor is considered as completed (it has been 

standardized in IEEE 1922.2). The calculation of the marginal emission factor could be 

improved by dissociating the power plants that compensate for the fluctuations in 

intermittent power than the others that directly adapt their capacity to meets the change in 

the power demand. 

Module 2: Recommendations on electricity consumption 

The predictions of the global emission factors are most of the time good enough to help the 

electricity consumers to reduce their emissions but the predictions of the marginal emission 

factors need to be improved. Nevertheless, both prediction types could be improved by 

training the model with additional data (especially meteorological forecasts and information 

on coupling the intermittent and conventional generators) and testing new algorithms (data 

science is actually progressing very fast). The master student Lawrence Abdulnour (MILA) is 

currently improving the predictive algorithms by introducing an attention mechanism that 

weights the contribution of the training data depending on their feature (Abdulnour et al., in 

preparation). Preliminary results show that the mean absolute percentage error can be 

reduced by 3 % thanks to the attention mechanism added to the LSTM model. 

Module 3: Consequences on the power grid and emissions module 

The theory behind the module has been developed but it needs to be tested and validated in 

real cases. Unlike the two other modules, the application of this module to a specific 

population probably requires more effort to take into account the regional cultural 

specificities that influence human behaviour.    
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Results 

A. PRESENTATION AND INTERPRETATION OF THE RESULTS 

Module 1: real-time electricity emissions 

Deployment: New England power grid 

For the purpose of the explanation, the model has been deployed for the New England (NE) 

power grid (New England is located in the North-East of the USA). The NE power grid has a 

20.8 GW installed capacity and relies mainly on nuclear and natural gas (see Figure 6). 

 
Figure 6 – Hourly net generation by energy source in New England 

Source: U.S. EIA 

It can be seen in Figure 6 that nuclear power plants have a steady production while natural 

gas power adjusts its capacity to meet the demand in real-time. 

The NE power grid is interconnected with the New York (2000 MW), Quebec (2000 MW) and 

New Brunswick (1000 MW) power grids and usually imports electricity from the Canadian 

provinces. 

Practically, the real-time emissions are calculated by multiplying the real-time power 

generation of each technology (data retrieved from the ISO-NE dashboard) with its 

corresponding emission factor (provided in Table 2).  

https://www.eia.gov/dashboard/newengland/electricity
https://www.iso-ne.com/isoexpress
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Table 2 – Emission factors for New England power plants 

Technology Emission factor Unit 

Coal power plant 0.970 kgCO2/kWh 

Natural gas power plant 0.417 kgCO2/kWh 

Oil power plant 0.926 kgCO2/kWh 

The emission factors were computed with the annual emission data of each NE power plant 

retrieved from the U.S. Energy Information Administration database (U.S. EIA). They include 

only the direct CO2 emissions attributed to the combustion of fossil fuels. Therefore, nuclear 

and renewable power plants are associated with zero CO2 emissions. More complete 

emission factors (i.e. life cycle emissions of power plants and non-CO2 emissions) could be 

calculated with the ecoinvent database. CO2 emissions from the biomass combustion are not 

accounted for here since the carbon was captured from the atmosphere during the biomass 

growth. It would, however, be pertinent to consider the timings of the carbon emissions and 

captures in the analysis of a bioenergy policy since these two phenomena do not occur at the 

same time and may affect the achievement of yearly GHG emission reduction targets. 

The effects of imports and exports of electricity on the NE power grid emissions are also 

considered. When electricity is imported, emissions associated with its generation abroad (by 

New York or Canadian power plants) are added to the NE power grid emissions. When 

electricity is exported, emissions related to its generation (by NE power plants) are 

subtracted. Import and export data are also retrieved from the ISO-NE dashboard. Emissions 

are calculated by multiplying the amount of electricity imported/exported by the relevant 

regional emission factor that is calculated by summing the emissions of the local regional 

power plants and then by dividing them by the regional amount of electricity generated. It is 

implicitly assumed that imported electricity that is re-exported (a.k.a wheel-through) is not 

considered in that calculation. In other words, if New York is importing electricity from 

Pennsylvania (PJM power grid) at a given time and also exporting to New England at the same 

time, then it is assumed that the electricity exported to New England has been generated by 

the New York power plants and is not coming from Pennsylvania. This is a simplification of 

reality because wheel-through may actually occur but such transactions are very difficult to 

model due to the lack of public data to track them. 

Emission factors 

The regional emission factors of New York power grid are calculated using the real-time 

power generation data provided by the NY-ISO dashboard. The emission factor of each 

https://www.eia.gov/electricity/data/emissions/
https://www.ecoinvent.org/database/database.html
https://www.iso-ne.com/isoexpress/
https://www.nyiso.com/real-time-dashboard
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generating technology has been calculated using the U.S. EIA database similarly to those of 

the NE power grid (see Table 4). 

Table 3 – Emission factors of the New York power plants 

Technology Emission factor Unit 

Natural gas power plant 0.458 kgCO2/kWh 

Coal power plant 1.042 kgCO2/kWh 

Oil power plant 0.859 kgCO2/kWh 

Dual fuel power plant 0.951 kgCO2/kWh 

The regional emission factor for the Canadian province cannot be calculated in real-time due 

to the lack of real-time data for these regions. In the case of Quebec, electricity is mostly 

produced by hydroelectric dams and wind farms (99.8% of electricity is generated from 

renewable sources according to Hydro-Québec). Therefore, a null CO2 emission factor is 

associated with the electricity imported from Quebec. 

The New Brunswick power grid is supplied by a larger variety of energy sources than Quebec: 

nuclear, natural gas, oil, coal and renewable energy. Due to lack of real-time data, the New 

Brunswick emission factor was calculated with the annual power generation data provided in 

the last NB Power annual report by multiplying the amount of electricity generated by each 

generating technology with its corresponding emission factor (using NE emission factors as a 

proxy) and then by dividing the emissions by the total electricity generated in New Brunswick. 

The calculation leads to 0.250 kgCO2/kWh. This example illustrates the difficulties that can be 

encountered when applying the model to a region where some real-time data are missing 

(data from the Canadian provinces in this case). It also shows the solutions to overcome these 

issues. 

Practically, the CO2 emissions of the NE power grid were calculated for each hour of 2018. 

Then, the NE emission factors were calculated by dividing these hourly emissions by the 

hourly power grid loads. Statistics results are provided in Table 4 for the local production and 

the power grid (including exchanges with other power grids). 

Table 4 – Emission factor statistics of the New England power grid 

Hourly Emission factor Local Local + Import - Export Unit 

Average 0.220 0.197 kgCO2/kWh 

Maximum 0.492 0.439 kgCO2/kWh 

Minimum 0.072 0.064 kgCO2/kWh 

Standard deviation 0.057 0.053 kgCO2/kWh 

https://www.eia.gov/electricity/data/emissions/
https://www.hydroquebec.com/data-center/advantages/clean-energy.html
https://www.nbpower.com/media/1489396/2018-19_annualreport-en.pdf
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It can be seen that the average New England emission factor is higher for local production. 

This is because New England generally imports electricity that is generated with low CO2 

emissions (especially from Quebec). 

Smart house emissions 

The hourly emission factors are useful to calculate the CO2 emissions of any electricity 

consumption. The use of hourly emission factors provides more accurate results for time-

varying electricity consumption than using a yearly average as it is usually done in carbon 

footprint methods (ex: GHG Protocol). 

For example, let’s consider a house that would have the consumption profile represented in 

Figure 7. The power demand is low at night because the people sleep, then it rises in the 

morning when they prepare their breakfasts. Some of them go to work and have lunch off-

site, while some others come back home to cook lunch. This explains why the demand is not 

as high as for breakfast. At the end of the afternoon, everybody comes back home and starts 

watching TV, doing laundry, preparing dinner, playing console games, etc. which result in an 

important increase in power demand. Finally, everybody goes to bed which reduces the 

power demand at night. 

 
Figure 7 – Hourly power demand of a household (example) 
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Additionally to the house appliances, it is assumed an electric heating system is used from 

November to Mars (0.4 kW/h) and that an electric vehicle is plugged every day in the evening 

to reload its batteries (loading 10kWh using a 1.5 kW charger). Globally, with an annual 

consumption of 5840 kWh (excluding the electric vehicle) this household would be more 

efficient than the average one in Massachusetts2 (7000 kWh). 

If we apply the NE power grid model retrospectively to calculate the past household 

emissions, it is found that the use of the annual average emission factor would underestimate 

the household emissions by 6%. That underestimation is of 8% when focusing on electric 

vehicle emissions. Such errors in emission assessments may be significant sources of 

uncertainty when assessing the mitigation measure potentials which consequently may lead 

to non-optimized decisions. In the case of electric vehicles, the real GHG emissions reductions 

would be actually smaller than the one anticipated with the annual average emission factor. 

Other information 

The model provides also a better knowledge of the emission intensity of household electricity 

consumption. For instance, loading the batteries of the electric vehicle emits 210 gCO2/kWh 

while it is 190 gCO2/kWh for the heating system. Combined with the volumes of electricity 

consumed and the flexibility of consumption, it enables the design of new energy efficiency 

policies. In this case, focusing on the battery loading would provide more emission reductions 

than targeting the electric heating system. 

Finally, the model can help to follow the emissions over time. For instance, Figure 8 provides 

monthly household electricity emissions. It can be seen that these emissions may vary 

significantly for winter months despite the electricity consumption is very similar for each 

winter months (being different because of the number of days per month). It means that 

saving electricity in January would reduce more the emissions than saving it in December. 

                                                

 
2
 https://providerpower.com/power-to-help/average-electric-bill-rates-consumption-massachusetts/ 
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Figure 8 – Household electricity GHG emissions per month 

Global and marginal electricity emissions 

In addition, the NE power grid model provides information on marginal electricity that can be 

used to optimize the electricity consumption of customers. One common mistake made by 

non-experts in power generation is to recommend the increase of power consumption at the 

time when the global electricity emission factor is the lowest to decrease their emissions. As 

illustrated below in the example, it is an oversimplification that can actually lead to an 

increase in global emissions. 

Figure 9 represents the power generation in New England on June 15, 2018. It can be seen 

that nuclear power plants generate a steady amount of electricity regardless of the variation 

in power demand. Nuclear power plants emit no carbon emission during their operation. 

Thus, by contributing to 30 to 50 % of the power mix, they help to maintain a low global CO2 

emission factor (between 130 and 200 gCO2/kWh, see Figure 11 hereafter).  
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Figure 9 – New England power generation on June 15, 2018 

Choosing the time when the emission factor is the lowest to minimize its GHG emissions 

assumes that all power plants will equally increase their capacity to face the additional 

demand. It is known, however, that nuclear plants won’t increase their electricity production 

because of an increase in the power demand. Therefore, a different emission factor that only 

includes the power plants that adapt their generation capacity in response to a change in the 

demand must be used. This is the purpose of the marginal emission factor provided by the 

model. 

Figure 10 identifies the changes in the capacity of each generating technology over the day. It 

shows that natural gas and hydropower contributions change the most during the day 

(natural gas in the early morning and night and hydro during the day). Figure 10 does not 

represent exactly the marginal electricity mix. Indeed, the marginal electricity is defined as 

the electricity generated by the generators that have adapted their power generation 

capacity to meet a change in the demand. However, Figure 10 also includes the power 

generation changes compensating for the intermittent generators. 
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Figure 10 – Changes in power generation in New England on June 15, 2018 

It can also be seen that some power plants increase their generation capacity at the same 

time than others reduce it. For instance, at 9 am hydropower is reduced (-180 MW) while it is 

increased from natural gas (+140 MW). In such a situation, it is unclear if an increase in the 

power demand would result in an increase in power generation from natural gas or a 

decrease in the reduction of hydropower. The approach developed in Dandres et al. (2017) 

(local marginal power generation) and then improved in Milovanoff et al. (2017) and 

Walzberg et al. (2019a) (adding global and marginal electricity imports and exports) solves 

that problem by considering all changes (with the exception of intermittent power) as 

possible contributors to marginal electricity. 

Figure 11 compares the global and marginal emission factors for June 15, 2018, in New 

England. It shows that both emission factors do not have their minimum at the same time. 

While it is around 3-5 am for the global emission factor, it is around 4 pm for the marginal 

emission factor. More importantly, the two factors evolve in the opposite manner: the global 

emission factor is high during the day while at this time the marginal emission factor is low 

and inversely at night. This means for instance, that scheduling the consumption of 1 kWh at 

3-5 am (minimum of the global emission factor) would, in fact, require the use of more 

emitting marginal generators. While an estimation based on the global emission factor would 

be 150 gCO2, the usage of the marginal generators would, in reality, lead to 250 gCO2, an 

emission increase of 67% in the emissions. This latter value should be seen as a maximum 
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because a marginal demand becomes part of the global demand after a certain period of 

time. The length of that period is however unclear. 

 
Figure 11 – Average and marginal emission factors in New England on June 15, 2018 

In summary, the first module can generate two types of results. Average emission factors that 

are used to calculate the emissions due to the consumption of electricity (in the present or 

past) and marginal emission factors that are used to plan the electricity consumption in the 

future. 

Module 2: Recommendations on electricity consumption 

The prediction module has been tested on several networks. Some results are presented here 

for the PJM network (Mid-Atlantic region in the US), France and Ontario. In each case, the 

LSTM model has been trained with the historical data of the power grid (cf. Table 5). 

Table 5 – Source of historical data of power grids 

Power grid Source of data 

PJM interconnection http://dataminer2.pjm.com/feed/gen_by_fuel 

France https://www.rte-france.com/fr/eco2mix/eco2mix-mix-energetique 

Ontario http://reports.ieso.ca/public/GenOutputbyFuelHourly/ 

The hourly electricity emissions factors for these power grids were calculated with the 

software Simapro (version 8) using the ecoinvent life cycle database (version 3). In the three 

cases, the predictions of the global emission factors were generally good enough to identify 
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the time when the emission rates are the lowest and follow the hourly variations (see Figure 

12, Figure 13 and Figure 14). 

 
Figure 12 – Example of a good prediction of the PJM emission factors 

 
Figure 13 - Example of a good prediction of the France emission factors 
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Figure 14 – Example of a good prediction of the Ontario emission factors 

For some days, the predictions diverge from the reality generally due to sudden changes in 

the temperature (see Figure 15, Figure 16 and Figure 17). It is interesting to note that even if 

the predicted values are wrong in these cases, the shape of the curve is usually still valid. 

 
Figure 15 – Example of a diverging prediction of the PJM emission factors 
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Figure 16 – Example of a diverging prediction of the France emission factors 

 
Figure 17 – Example of a diverging prediction of the Ontario emission factors 

On average, the relative error of the prediction is 2% for PJM, 11 % for France and 12% for 

Ontario. The higher errors for France and Ontario are due to the more important contribution 

of intermittent sources of electricity (wind or solar) that are less foreseeable. Considering the 

PJM emission factors are around 5 times greater than the ones of France and Ontario, the 

absolute error on emission factors is similar for all regions. 

The prediction of the emission factors enables the development of electricity consumption 

strategies to reduce GHG emissions. These strategies should be adapted to consumer profiles 
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the power consumption when the emission factor is the lowest while another could simply 

aim to reduce the power consumption when the emission factor is the highest. Some 

strategies could focus on shifting the power demand while others could also aim to reduce 

the power demand. 

The emerging Internet-of-things offers new possibilities to manage automatically electric 

industrial equipment and household appliances. This is, therefore, a great opportunity to 

integrate smart strategies in the design of connected objects.  

Module 3: Consequences on the power grid and emissions module 

The best power consumption strategies may fail to reach their objectives if they are not 

effectively implemented. One source of failure is human behaviour, that is why it has to be 

considered in these strategy deployments. 

The human behaviour model was tested in a virtual case study where people of 100 smart 

homes located in the region of Toronto (Ontario power grid) were receiving 

recommendations to minimize their GHG emissions over one year (April 2013 to March 2014). 

Two types of measures were recommended to the people: shifts and reductions of power 

consumption. It is assumed the people would not apply more than one measure at a time. 

Three scenarios were explored to evaluate the reductions of GHG emissions due to the 

enforcement of the measures: 

 Scenario 1: recommendations on power shifts only; 

 Scenario 2: recommendations on power reductions only; 

 Scenario 3: recommendations on power shifts and reductions.  

Each scenario was simulated 10 times with the agent-based model (a greater number of 

simulations would have led to more accurate results but considering the long time needed to 

run a single simulation, 10 simulations were judged sufficient for the purpose of the 

demonstration in this report). 

Figure 18 presents the results of the simulation regarding the reduction in electricity and GHG 

emissions.  
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Figure 18 – Reductions of power consumption and GHG emissions due to measures 

Legend: in each column, the reduction is presented as a range of values (the orange box) defined as 

the average reduction +/- the standard deviation. The minimum and maximum reductions observed 

during the simulations are also reported (the vertical black line). Scenario 1 includes 

recommendations on power shift only, scenario 2 includes recommendations on power reductions 

only and scenario 3 includes both types of recommendations. 

It can be seen that despite there is no reduction in power consumption in scenario 1, shifting 

the power demand in time still enables a 3 % reduction in GHG emissions. In the second 

scenario, a decrease of 2 % in electricity consumption provides a 5.5 % reduction in GHG 

emissions. Finally, the GHG emission reductions of the third scenario are between the first 

and second scenario (it does not cumulate the reductions of the first two scenarios since only 

one measure can be adopted at a time). The third scenario, despite it offers more options to 

the consumers that could facilitate the adoption of the recommendations, does not enable 

more reductions in GHG emissions. Its reductions are however close to those of the second 

scenario.  
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Discussion 

Place in the ecosystem 

A. USAGE 

Concrete examples 

From current or past studies 

The modules of the model have been used in various contexts to calculate the 

emissions due to electricity consumption, predict the best time to consume electricity, model 

the human behaviour in demand-side management programs. The module results are 

sometimes used in a broader model to generates other results ( e.g. Elzein et al. (2018) where 

the real-time emissions factors are used to operate energy storage systems in a smart grid 

context). 

 Maurice et al. (2014): the GHG emissions of a cloud computing system powered by the 

Ontario electric utility are assessed hour by hour over a year. It is found that these 

emissions may vary significantly between hours, days, weeks, months and seasons. 

Moreover, the comparison with the emissions calculated using the annual emission 

factor reveals that using a static emission factor may be an important source of 

uncertainty on the GHG emission calculation. 

 Vandromme et al. (2014): the authors calculate the GHG emissions of a 

videoconference system using real-time emission factors. They compare different 

computer server configurations (cloud vs non-cloud, and varying the number of CPU 

and size of RAM allocated to the videoconference service) to identify the one 

minimizing the GHG emissions of the service. It is also found that server virtualization 

enables a significant reduction in GHG emissions. 

 Dandres et al. (2015): the GHG real-time emissions of several server configurations 

providing an instant messaging service are compared (cloud vs non-cloud, and varying 

the number of CPU and size of RAM allocated to the videoconference service). A 

compromise is found to reach a certain quality of services (involving more computer 

resources) without compromising the GHG emissions. The cloud configurations are 

always associated with the lowest emissions. 
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 Dandres et al. (2017): the server load of an online service (e.g., computing, picture or 

video editing, etc.) is dispatched along a data centre network to minimize its GHG 

emissions in real-time. The results show that the consideration for the consequences 

of sudden data centre power demand changes on the power grids (marginal electricity 

and related emissions) plays an important role when minimizing the GHG emissions of 

the data centre network. 

 Milovanoff et al. (2017): the environmental performances of several demand-side 

management programs are compared in the French context. The use of real-time 

emission factors enables a deeper comprehension of the environmental impacts 

associated with the consumption of electricity (power generating technologies and 

electricity imports) depending on the time it is consumed. The results show the 

importance to take into account electricity imports and reveal that it is not possible in 

France to minimize simultaneously the GHG emissions of electricity and its impacts on 

the human health, the ecosystems and the natural resource depletion. 

 Riekstin et al. (2017): the authors develop and train a machine learning model with 

power grids data to identify the best time of the day to use an appliance in the Quebec 

province. It is found that launching the dishwasher at the right time may save up to 25 

% of its GHG emissions as compared to the worst time. 

 Riekstin et al. (2018): the model proposed in the previous paper is improved and 

tested in other regions: US (PJM interconnection), Ontario and France. The predictions 

are then used to optimize the power consumption of a smart house and reduce its 

GHG emissions in real-time. It is found, in the Ontario case, that 30 gCO2e can be saved 

for each dishwasher cycle if it is started at the right time. In the case of an electric 

vehicle, reloading the batteries (7.8 kWh per day, in Ontario) at the proper time can 

save up to 310 gCO2e per day. 

 Elzein et al. (2018): a dynamic model is developed to optimize the operations of an 

energy storage system deployed in one of the regional French power grids 

(Normandy). The environmental impacts of the power grid are calculated in real-time 

and an algorithm optimizes the time to unload the energy storage system (to prevent 

the use of the most polluting generators) and reload it (when the emission factor is the 

lowest). Several optimization strategies are compared (minimizing the production cost, 

the GHG emissions, the impact on the human health, ecosystems and natural resource 

depletion). Once again, it is found that not all objectives can be minimized 

simultaneously. The results also show that the use of real-time emission factors greatly 
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improves the accuracy of the emission assessment of the energy storage as compared 

to methods using static emission factors. 

 Dandres et al. (2019): this paper presents the IEEE 1922.2 standard in which the 

electricity emission module has been standardized to calculate the emissions of 

information and communication technology systems. Nevertheless, this standard 

focuses on the calculation of the real-time electricity emission factors and can be used 

to assess the emissions attributed to any electricity consumption (i.e., using the global 

emission factor). 

 Walzberg et al. (2019a): the authors assess the environmental impacts of household 

electricity consumption using global and marginal emission factors under different 

temporal granularity (hourly up to annually). They design a method combining global 

and marginal emission factors to properly assess the benefits obtained by real-time 

side demand programs. It is found that using a too gross temporal granularity may 

significantly increase the uncertainty of the results. 

 Walzberg et al. (2019b): an agent-based model is developed to simulate the behaviour 

of electricity consumers regarding the adoption of a real-time demand-side 

management program. The authors found that the conformity of the consumers 

toward their neighbours is an important driver in the program adoption. The agent-

based model is embedded in a dynamic life cycle assessment framework (using real-

time emission factors) to automatically calculate the environmental benefits achieved 

by the program adoption.  

Possible future studies 

Several types of studies could be conducted with the model and its modules. 

First, studies could be made on the electricity consumers to evaluate the potential to reduce 

their GHG emissions using real-time recommendations reducing or shifting the power 

demand. These studies should be conducted on the residential, institutional, commercial, 

small and medium enterprises and industrial sectors. For each sector, the study should 

consider the flexibility in the power consumption and the synergy effects (if any) with other 

sectors. The GHG emission reduction potential should be investigated at the equipment level 

(or at least, group of similar equipment) since the flexibility in the power consumption may 

vary between equipment (ex: fridge and washing mashing have different flexibilities). Studies 

would focus on the actual GHG emission reduction potential but also explore prospective 

scenarios where habits and infrastructures could evolve to a more desirable situation (ex: 
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changing working times, enable electric vehicles to share their electric power with the power 

grid, etc.). Prospective studies should be conducted with the help of proper energy models 

such as E3MC/Energy2020, etc. The studies should determine if recommendations could be 

automated (using connected objects) or based on human behaviour. It is expected that with 

the upcoming 5G and Internet of things, the smart automation of power consumption would 

rise sensibly for all sectors. Nevertheless, it should not be assumed that all the connected 

objects will automatically comply with the power consumption recommendations. Indeed, 

they might be programmed with other objectives that might enter into conflict with the 

reduction of GHG emissions. For instance, enforcing the required quality of service of an 

online service may require some extra power consumption by the IT equipment involved. 

This first set of studies would provide inputs for the second series of studies simulating the 

compliance of the connected objects and human beings regarding the smart power 

consumption recommendations. Behavioural models (agent-based and/or machine learning 

models) would be built for each type of electricity consumer and then their behaviour in 

response to the recommendations would be simulated. Behavioural models would be used in 

recursive simulations to identify the drivers facilitating the adoption of the recommendations 

and improve the format of the recommendations (media used, incentive type, nudge or not, 

etc.). Techno-economic studies would be conducted to evaluate the rebound effects 

potentially caused by saving electricity and emissions and defined measures that could 

counter them. Indeed, saving electricity could enable other usages of electricity that would 

then cancel the benefits of the recommendations. Similarly, the reduction in GHG emissions 

could be used as carbon offsets for other activities that would in the end not result in 

emission reductions. Once again, with the upcoming 5G era, it is anticipated that more data 

will be available to characterize the behaviour of people and connected objects. Such data 

would beneficiate to behavioural models. 

The third type of exploratory study would analyze the transformation of the electricity sector 

under the assumption of global smart consumption of electricity (i.e., people and objects 

globally comply with the recommendations provided to them to mitigate their GHG emissions 

in real-time). Indeed, it is anticipated that the use of marginal generators would evolve 

significantly if all consumers would change their power consumption profile. The equilibrium 

should be found to prevent the creation of new peak hours that would require using pollutant 

power generators. This means that an interactive algorithm should be designed to manage 

the recommendations in real-time. That algorithm would constantly calculate the anticipated 

marginal emission factors based on the number of consumers willing to adapt their 
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behaviour, the potential marginal generator, the forecasted power demand and 

meteorological conditions. 

How can it help at policy elaboration? 

In the short term, the model can greatly help in the development of demand-side 

management programs to reduce GHG emissions. Then, it can help to define more global 

energy policies by providing a new variable to influence the power demand and reduce GHG 

emissions. The model could then be used interactively with other energy models to study 

energy policy effects on the economy, the environment and the society. As suggested 

previously, the model could be used to investigate the environmental benefits of electric 

vehicle policies. The model would provide recommendations on the best time to reload 

batteries to minimize emissions and possibly share the electricity of batteries with the power 

grid (the electric vehicle would act as multiple small power generators) to reduce the use of 

the most polluting power generators. Moreover, the model would provide hints on the most 

efficient incentive to convince people to use/buy electric vehicles.  

B. POSSIBLE SYNERGY WITH OTHER MODELS 

i. How to go beyond current results (what’s needed)? 

The model can be improved in several ways. In the first module, the calculation of the 

marginal electricity emissions could be refined by considering the different temporal ranges 

of the marginal generators used to adapt the production to the demand in real-time. It is seen 

that some power grids use different marginal generators to handle the changes in the power 

demand within 5 min, 10 min and 30 min. Integrating this temporal scale in module 1 would 

also improve the assessment of the environmental benefits of power consumption 

recommendations. Moreover, a deeper investigation of the power grid data could also help 

to identify the generators that compensate for the fluctuations of the intermittent power 

(and that are not directly affected by a change in the power demand). 

In the second module, the machine learning model should be improved to enable better 

predictions of the marginal emission factors. This means probably that more data should be 

used to train the model (such as meteorological forecasts) but also possibly a different neural 

network architecture and algorithms could be envisaged. The machine learning model for 

global emission factors can also be improved with the development of new algorithm in data 

science. 

In the third module, behavioural models should be developed for all types of electricity 

consumers. The main difficulty to achieve this task is the lack of behavioural data and the 
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difficulty to validate the models. Nevertheless, more data are being generated by people (due 

to the increasing use rate of connected objects). Ideally, the model could be linked to a 

demand-side management program and data of each registered user could be used to 

improve the behaviour model in real-time. For that reason, 5G and the Internet of things 

represents an opportunity to drastically improve the behavioural model. Ethics and 

cybersecurity should, however, not be neglected when collecting and using people's data. A 

promising approach would be the combination of machine learning models to generate 

knowledge from behavioural raw data and agent-based models integrating that knowledge in 

the behavioural model. New causality links between strong adhesion to demand-side 

management programs and consumer characteristics could be identified by machine learning 

and then spread among the consumers through nudges. 

ii. Does it make use of common data sets? 

The model uses power grid data: historical power generation by technology, power demand 

and intermittent generation forecasts. With the future development of the model it is also 

anticipated to use meteorological forecast (probably: temperature, wind,  sunshine and 

humidity) and people data (behavioural data regarding the adhesion to environmental 

measures). 

iii. Is it a standalone tool only? 

The model is standalone but can also be integrated into another energy model to improve 

some aspects of its modelling (calculate more accurate or predict electricity emission factors, 

simulate the people's behaviour). The integration would be especially relevant when the 

model uses temporally disaggregated data of power generation or consumption. 

iv. If not, has it soft or hard coupling? 

N/A 

v. Does it feed on other models output? 

The model could be fed by other models to evaluate the environmental benefits of energy 

policies that use temporally disaggregated data. For instance, an energy model could provide 

a future electricity mix from which our model would analyze the potential reductions of GHG 

emissions and propose recommendations to reach these reductions. The lack of knowledge 

regarding the existence of other models limits actually the evaluation of the possibility to use 

our model with other energy models. The energy sector has many facets represented by 

different models, but we have explored only a few of them so far. That is why it is important 
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to keep meeting other energy experts and discuss possibilities offered by model 

combinations.  

vi. Can it produce inputs for others? 

The model could produce inputs for other models. Accurate emission factors can be used to 

better model the emissions (direct or life cycle) and environmental impacts of power 

generation. The short term predictions of the emission factors might also be useful in an 

optimization context. Finally, any study involving behavioural effects would benefit from the 

agent-based model (behaviours are often modelled as scenarios but they usually fail to 

represent the reality).  
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