Management of Canada's Energy Transition and Associated Risks through Optimized CGE Approach

Institute for Energy, Environment, and Sustainable Communities

December 18, 2019

Part 01 Introduction

Various components

Various activities

- Energy allocation
- Technology utilization
- ❑ Capacity expansion
- Emission reduction

These issues are associated with ...

- Complex interactions
 - Nonlinear relationships
- Multi-level uncertainties

There are many direct and indirect effects of climate change on energy systems

Direct effects:

- Air temperature space heating & cooling
- Precipitation hydropower production

Indirect effects:

- Policy implanted for adaptation of climate change, e.g., clean energy measures
- GHG mission mitigation activities

An interdisciplinary viewpoint is necessary

Increasing energy systems problems

Leading to emerging problems

- Growing energy demands
- Rising concerns over energy security
- Depletion of conventional energy sources
- Development of renewable energy sources
- Economic implication
- Impacts on environment

Integrated management of energy systems is desired :

- Determine system schemes
- Ensuring adequate energy capacities to meet the projected future system demand and operating requirements

- Develop advanced energy systems optimization models and computable general equilibrium model under climate change conditions
- Apply the proposed models to representative regions in Canada to support effective systems planning and policymaking

Model

Energy optimization model

GHG management—AB model

Fig. Capacity expansion of electricity generation facilities

 To reduce GHG emission and satisfy future power demand natural gas would expand [4.53, 5.01] GW

The expanded capacity of renewable power generation S 3.83, 0.26 and 0.16 GW of wind, biomass, and hydro power, respectively

> GHG management—SK model

- In 2030, power generation **∑** coal to natural gas
- After applying a carbon tax of \$50 CAD/ tonne power supply scheme will change
- More than 60% of increased natural gas capacity will transfer to NG-CCS
 capacity

Renewable energy planning—BC model

Figure: Power generation in BC for renewable energy

Figure: System cost for aimerent models

Figure: Power generation in BC for non-renewable

Figure: System efficiencies for different models

- Main power generation mode Mydropower
- Notable renewable energy resources hydropower and wave/tide power
 - CTFO-REM model Selfective tool for supporting other practical environmental management

Renewable energy planning—MB model

- The most sensitive sector under climate change impacts Selectricity
- Renewable energy resources comparative abundance in Manitoba particularly hydropower
- The lesser amount of electricity would be exported under changing
 climate than under the BAU case

>>> Computable General Equilibrium Model

- Scenario 1&2: GDP change less than 0.2%
- Scenario 3&4:

Decrease faster when carbon tax continues to grow up

• Scenario 5:

Affect the economy significantly (4.12%)

Figure: Impacts of carbon tax on GDP and GHG emissions

- Effective way to reduce the GHG emissions
- Growth rate is increasing along with the carbon tax rate
- Effects on GHG emission reduction is less obvious than the effects of carbon tax on GDP change

Figure: Impacts of carbon tax on GDP and GHG emissions

Figure: Total output change of five fossil energy sectors

The total output will all decrease

Figure: Total output change of common sectors

- All the output will decrease
- Fossil-fuel electric power generation will reduce the most

Reginal Climate Model

- GCM: HadGEM, CanESM, GFDL, MPI, IPSL
- RCM: PRECIS, RegCM, WRF
 - China 25 km (A1B)
 - China 50 km (RCPs)
 - Canada 50km (RCPs)
 - Canada Ontario, Saskatchewan, Alberta, Manitoba 25km
 - Arctic 50km (RCPs)
- In progress (50 km):
 - Australia, Europe, North America, South America, and Africa

Reginal Climate Model

Climate Change Data Portal (CCDP) was launched in early 2014

to ensure easy acces to refined high-resolutio regional climate data

Available at: http://ccdp.network/

Thank you!

