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Model Landscape: temporal resolution vs detail
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M odeling landscape - approach must be question &
technology appropriate
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Model Landscape.‘ sector vs spatial coverage
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Modelling
Non-marginal change

Hadi Dowlatabadi
Institute for Resources Environment & Sustainability
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Introduction

* A policy aiming for change exceeding 10% is seeking non-marginal
change.

* Such modelling cannot:
* Rely on historic elasticities in demand and income.

* Assume “all else held constant”; because hardly anything will be as it is at
present.



Challenges in non-marginal change

* Unexpected technological change
* Unpredictable public choices
* Other unknowns



IPCC (2014) AR5 Synthesis Report:
“Scenarios without additional efforts to constrain emissions (‘baseline scenarios’) lead to
pathways ranging between RCP6.0 and RCP8.5”
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Summary

* Modelling allows policymakers to explore strategies and their
susceptibilities to various uncertainties.

* Robust policy-making is only possible when various contingencies

addressing the uncertainties and their impacts have been considered
and baked in.



Model Landscape.‘ sector vs spatial coverage
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Context

* BC has legislated targets to reduce provincial GHG emissions by 40%
below 2007 levels in 2030, 60% in 2040 and 80% in 2050.

* The Climate Action Secretariat (CAS), in consultation with Ministry
partners and stakeholders, led modeling of CleanBC policies

* CAS used Navius’ gTech model to forecast the effect of CleanBC on
BC’s economy and GHGs.



The DNA of gTech
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Specifics of gTech

* 200 technologies including biofuels
* Each technology has capital, operating, and non-financial behavioral costs

* Full equilibrium macroeconomic feedbacks:
* balanced supply and demand every 5 years

* 10 regions
* British Columbia, 8 other Canadian regions and the United States

* Over 70 sectors of the economy in each region



gTech Inputs and Outputs
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gTech can Model Various Policies

* Carbon pricing
* Incentive programs
* Regulations

* Flexible regulations
* Variations in other tax policy
* Policy packages



gTech Limitations

* Three types of limitations:
* Uncertainty about the future energy economy
* Boundaries of the model
* Calibration challenges

* Some sectors are outside of scope of the model
* e.g. deforestation



CleanBC Results
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Additional policies in
2019 to reach our target

18.9 Mt of GHG
reductions:

ZEV mandate at 100%
ZEV sales by 2040

Low carbon fuel standard
at 20% by 2030

Carbon tax at $50 in
2021

Renewable natural gas
requirement at 15% in
2030

Building code
strengthening after 2030
Incentives for ZEVs and
heat pumps
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Stringent organic waste
diversion; landfill gas
capture and other
policies



Want More Information?

* Description of the “modeling
nadls toolkit” used to analyze the
impact of CleanBC

* Key assumptions and limitations
of the approach

* Description of how existing and
proposed CleanBC policies are
modeled

* Raw modeling results
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Production cost models - overview

Objective: determine the least-cost dispatch of

generation assets on the electricity system that meet
load at every timestep and node
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Production cost model
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Production cost models — Key attributes

]

Detailed grid-scale technology representations
Generators (conventional, renewables)
Transmission (distribution) lines

Demand response
Electric vehicles
Storage technologies
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Capacity expansion + prs [0

Production cost model synergy Solar PV
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Develop insights across spatial-temporal scales giomass [
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Production cost model - limitations

Accessing good input data
* Generator characteristics (ramp rates, heat rates, ...)
* Nodal, time-series load data
* Transmission/distribution capacity

Historical versus future data
* meteorological (climate change) and
* load data (electrification)

Future policy uncertainty
* Rate structures (time of use pricing, storage remuneration, EV charging)

Computational tractability
* Balancing model accuracy with breadth
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Agent/Market-Based &
Stochastic Models

Generating Insights for Renewables, EV and DR
Integration
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We want to study real-time operations,
across various scales & actors
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Source: Adapted from Mational Energy Education Development Project {public domain)




Utilize market dynamics for simulation
at distribution or continental scales

e Double auction market
« Bids from consumers & generation
o Dispatch @ intersection
« Slopes represent sensitivities
e Time-marching solution

 Very scalable simulation framework

« Extend to multi-area w/ constraints

o Simplified or detailed cost inputs

« Cost-optimal solution without ‘optimization
e DR actors can be represented

 Price (automatic) consumer preference
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Example result for WECC for interconnection
global cost reduction potential

* > std deviation of stand-alone = greater flexibility
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Probability distribution

0.06

0.04

0.02

0.04

0.03

0.02

0.01

D L

0

Quantifying uncertainty of grid

operations Is important

* E.g. Statistical EV behavior

. Translate to PDFs

13 16
100

0.03

0.02

0.01}

0.03

0.02 |

0.01 ¢

0

150 0 50 100

50 100
Charging demand of plug-in electric car (kW)

250

Number of cars
= o B
= =] =]

an
=

0

No—

350r
] 300F
[ 250F
2001

150 ]

100

) hﬂm
0

20 0 20 40 60 80 100
Max Used Electrical Energy (kWhr)

5 10 15
Departure/Arival Time (hr)

wazaa—l—ﬁfxi—l-vfjxixj—k--

T TTe——

K" = o{a®} + 1 {BK7} + O (v7)
= 1 {BeBhK"}
+ z{Z%JBb ik 4 (2 ’Y?k“/?z)ﬁ”ﬁ“}

+ 3{ (Vi) K7+ 0 (v )



Gain ability to understand e.g. variability
oower flows, voltage limits, etc.
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Model landscape: objective

ICAM 3: A simulation model with interacting adaptive agents representing
different nations and specific interests

gTech: general equilibrium model with technological explicitness, behavioural
realism, and macroeconomic feedbacks

0SeMOSYS: Least-cost (capital + O&M + CO2) optimization of generation and
transmission capacity expansion

SILVER: Least-cost optimization of electricity system operation

Load control: EV & thermostatic with discrete time marching electricity market
simulation

Probabilistic load flow with uncertainty quantification and robust design &
control

Energy Hub / PyEHub: minimize cost (investment + operational + CO2) of ml] 118 SN
converters and storages sizes with multi-stream energy balancing ;;' i 15




