Energy Modelling Initiative — Initiative de modélisation énergétique Bringing the Tools to Support Canada's Energy Transition — Outiller le Canada pour réussir la transition

An Overview of Energy Models

Panel Session:

Hadi Dowlatabadi, Professor, UBC
Sean Broadbent, BC Ministry of Environment
Cameron Wade, PhD Student, IESVic
Madeleine McPherson, Assistant Professor, IESVic
Curran Crawford, Professor, IESVic
Ralph Evins, Assistant Professor, IESVic

EMI — Western Workshop Friday, September 27, 2019 University of Victoria

Model Landscape: sector vs spatial-temporal resolution

Spatial – Temporal Scale

Model Landscape: temporal resolution vs detail

Electricity modelling types: different model types cover overlapping timeframes from milli-seconds to years, but there is a trade-off with the feasible level of modelling detail

> Reference: Palmintier, B. (2013). "Incorporating operational flexibility into electric generation planning: impacts and methods for system design and policy analysis" PhD dissertation, Massachusetts Institute of Technology

> > 3

Modeling landscape - approach must be question & technology appropriate

5

Modelling Non-marginal change

Hadi Dowlatabadi

Institute for Resources Environment & Sustainability

UBC

Introduction

- A policy aiming for change exceeding 10% is seeking non-marginal change.
- Such modelling cannot:
 - Rely on historic elasticities in demand and income.
 - Assume "all else held constant"; because hardly anything will be as it is at present.

Challenges in non-marginal change

- Unexpected technological change
- Unpredictable public choices
- Other unknowns

IPCC (2014) AR5 Synthesis Report:

"Scenarios without additional efforts to constrain emissions ('baseline scenarios') lead to pathways ranging between RCP6.0 and RCP8.5"

Year

10

Summary

- Modelling allows policymakers to explore strategies and their susceptibilities to various uncertainties.
- Robust policy-making is only possible when various contingencies addressing the uncertainties and their impacts have been considered and baked in.

cleanBC Modeling with Navius' gTech Model

Energy Modeling Initiative Western Workshop September 27, 2019

> Sean Broadbent, PhD Climate Action Secretariat

Ministry of Environment and Climate Change Strategy

Context

- BC has legislated targets to reduce provincial GHG emissions by 40% below 2007 levels in 2030, 60% in 2040 and 80% in 2050.
- The Climate Action Secretariat (CAS), in consultation with Ministry partners and stakeholders, led modeling of CleanBC policies
- CAS used Navius' gTech model to forecast the effect of CleanBC on BC's economy and GHGs.

The DNA of gTech

Specifics of gTech

- 200 technologies including biofuels
 - Each technology has capital, operating, and non-financial behavioral costs
- Full equilibrium macroeconomic feedbacks:
 - balanced supply and demand every 5 years
- 10 regions
 - British Columbia, 8 other Canadian regions and the United States
- Over 70 sectors of the economy in each region

gTech Inputs and Outputs

gTech can Model Various Policies

- Carbon pricing
- Incentive programs
- Regulations
- Flexible regulations
- Variations in other tax policy
- Policy packages

gTech Limitations

- Three types of limitations:
 - Uncertainty about the future energy economy
 - Boundaries of the model
 - Calibration challenges
- Some sectors are outside of scope of the model
 - e.g. deforestation

CleanBC Results

18.9 Mt of GHG reductions:

- ZEV mandate at 100% ZEV sales by 2040
- Low carbon fuel standard at 20% by 2030
- Carbon tax at \$50 in 2021
- Renewable natural gas requirement at 15% in 2030
- Building code strengthening after 2030
- Incentives for ZEVs and heat pumps
- Methane regulations
- Stringent organic waste diversion; landfill gas capture and other policies

Want More Information?

- Description of the "modeling toolkit" used to analyze the impact of CleanBC
- Key assumptions and limitations of the approach
- Description of how existing and proposed CleanBC policies are modeled
- Raw modeling results

Production cost models - overview

Objective: determine the least-cost dispatch of generation assets on the electricity system that meet load at every timestep and node

Production cost model

Unit commitment, economic dispatch, optimal power flow Mixed-integer linear formulation

Several model platforms:

PLEXOS – commercial

SILVER – python based

Common applications Grid decarbonization Renewable energy, storage, and electric vehicle integration Electrification

Production cost models – Key attributes

400 [4] 300

-300

Detailed grid-scale technology representations Generators (conventional, renewables) Transmission (distribution) lines

Demand response Electric vehicles Storage technologies

Spatial accounting of transmission network & load centers

Alternative market structures Dispatch horizon > forecasting errors; storage assets Remuneration policies

Scenario design approach Long term energy plan proposals Output from capacity expansion model

Production cost model - limitations

Accessing good input data

- Generator characteristics (ramp rates, heat rates, ...)
- Nodal, time-series load data
- Transmission/distribution capacity

Historical versus future data

- meteorological (climate change) and
- load data (electrification)

Future policy uncertainty

• Rate structures (time of use pricing, storage remuneration, EV charging)

Computational tractability

Balancing model accuracy with breadth

Agent/Market-Based & Stochastic Models

Generating Insights for Renewables, EV and DR Integration

Dr. Curran Crawford (& Dr. Djilali, students)

Energy Modeling Initiative Western Workshop

September 27, 2019 Victoria BC

We want to study real-time operations, across various scales & actors

Source: Adapted from National Energy Education Development Project (public domain)

Utilize market dynamics for simulation at distribution or continental scales

- Double auction market
 - Bids from consumers & generation
 - Dispatch @ intersection
 - Slopes represent sensitivities
 - Time-marching solution
- Very scalable simulation framework
 - Extend to multi-area w/ constraints
 - Simplified or detailed cost inputs
 - Cost-optimal solution without 'optimization'
- DR actors can be represented
 - Price (automatic) consumer preference

Example result for WECC for interconnection global cost reduction potential

• > std deviation of stand-alone = greater flexibility

Quantifying uncertainty of grid operations is important

Gain ability to understand e.g. variability power flows, voltage limits, etc.

Model landscape: objective

ICAM 3: A simulation model with interacting adaptive agents representing different nations and specific interests

gTech: general equilibrium model with technological explicitness, behavioural realism, and macroeconomic feedbacks

OSeMOSYS: Least-cost (capital + O&M + CO2) optimization of generation and transmission capacity expansion

SILVER: Least-cost optimization of electricity system operation

Load control: EV & thermostatic with discrete time marching electricity market simulation

Probabilistic load flow with uncertainty quantification and robust design & control

Energy Hub / PyEHub: minimize cost (investment + operational + CO2) of converters and storages sizes with multi-stream energy balancing

